pandas.Series.tz_convert#
- Series.tz_convert(tz, axis=0, level=None, copy=<no_default>)[source]#
Convert tz-aware axis to target time zone.
- Parameters:
- tzstr or tzinfo object or None
Target time zone. Passing
None
will convert to UTC and remove the timezone information.- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to convert
- levelint, str, default None
If axis is a MultiIndex, convert a specific level. Otherwise must be None.
- copybool, default False
Also make a copy of the underlying data.
Note
The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.
You can already get the future behavior and improvements through enabling copy on write
pd.options.mode.copy_on_write = True
Deprecated since version 3.0.0.
- Returns:
- Series/DataFrame
Object with time zone converted axis.
- Raises:
- TypeError
If the axis is tz-naive.
See also
DataFrame.tz_localize
Localize tz-naive index of DataFrame to target time zone.
Series.tz_localize
Localize tz-naive index of Series to target time zone.
Examples
Change to another time zone:
>>> s = pd.Series( ... [1], ... index=pd.DatetimeIndex(["2018-09-15 01:30:00+02:00"]), ... ) >>> s.tz_convert("Asia/Shanghai") 2018-09-15 07:30:00+08:00 1 dtype: int64
Pass None to convert to UTC and get a tz-naive index:
>>> s = pd.Series([1], index=pd.DatetimeIndex(["2018-09-15 01:30:00+02:00"])) >>> s.tz_convert(None) 2018-09-14 23:30:00 1 dtype: int64