pandas.Series.dt.tz_convert#
- Series.dt.tz_convert(*args, **kwargs)[source]#
Convert tz-aware Datetime Array/Index from one time zone to another.
- Parameters:
- tzstr, zoneinfo.ZoneInfo, pytz.timezone, dateutil.tz.tzfile, datetime.tzinfo or None
Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A tz of None will convert to UTC and remove the timezone information.
- Returns:
- Array or Index
Datetme Array/Index with target tz.
- Raises:
- TypeError
If Datetime Array/Index is tz-naive.
See also
DatetimeIndex.tz
A timezone that has a variable offset from UTC.
DatetimeIndex.tz_localize
Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex.
Examples
With the tz parameter, we can change the DatetimeIndex to other time zones:
>>> dti = pd.date_range( ... start="2014-08-01 09:00", freq="h", periods=3, tz="Europe/Berlin" ... )
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='h')
>>> dti.tz_convert("US/Central") DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='h')
With the
tz=None
, we can remove the timezone (after converting to UTC if necessary):>>> dti = pd.date_range( ... start="2014-08-01 09:00", freq="h", periods=3, tz="Europe/Berlin" ... )
>>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='h')
>>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='h')