pandas.Series.rename_axis#
- Series.rename_axis(mapper=<no_default>, *, index=<no_default>, axis=0, copy=<no_default>, inplace=False)[source]#
Set the name of the axis for the index.
- Parameters:
- mapperscalar, list-like, optional
Value to set the axis name attribute.
Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
.- indexscalar, list-like, dict-like or function, optional
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values.
- axis{0 or ‘index’}, default 0
The axis to rename. For Series this parameter is unused and defaults to 0.
- copybool, default False
Also copy underlying data.
Note
The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.
You can already get the future behavior and improvements through enabling copy on write
pd.options.mode.copy_on_write = True
- inplacebool, default False
Modifies the object directly, instead of creating a new Series or DataFrame.
- Returns:
- Series, or None
The same type as the caller or None if
inplace=True
.
See also
Series.rename
Alter Series index labels or name.
DataFrame.rename
Alter DataFrame index labels or name.
Index.rename
Set new names on index.
Examples
>>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object