pandas.Series.max#
- Series.max(*, axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use
idxmax
. This is the equivalent of thenumpy.ndarray
methodargmax
.- Parameters:
- axis{index (0)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- scalar or Series (if level specified)
The maximum of the values in the Series.
See also
numpy.max
Equivalent numpy function for arrays.
Series.min
Return the minimum.
Series.max
Return the maximum.
Series.idxmin
Return the index of the minimum.
Series.idxmax
Return the index of the maximum.
DataFrame.min
Return the minimum over the requested axis.
DataFrame.max
Return the maximum over the requested axis.
DataFrame.idxmin
Return the index of the minimum over the requested axis.
DataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays( ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]], ... names=["blooded", "animal"], ... ) >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.max() 8