pandas.DataFrame.sem#
- DataFrame.sem(*, axis=0, skipna=True, ddof=1, numeric_only=False, **kwargs)[source]#
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- Parameters:
- axis{index (0), columns (1)}
For Series this parameter is unused and defaults to 0.
Warning
The behavior of DataFrame.sem with
axis=None
is deprecated, in a future version this will reduce over both axes and return a scalar To retain the old behavior, pass axis=0 (or do not pass axis).- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keywords passed.
- Returns:
- Series or DataFrame (if level specified)
Unbiased standard error of the mean over requested axis.
See also
DataFrame.var
Return unbiased variance over requested axis.
DataFrame.std
Returns sample standard deviation over requested axis.
Examples
>>> s = pd.Series([1, 2, 3]) >>> s.sem().round(6) 0.57735
With a DataFrame
>>> df = pd.DataFrame({"a": [1, 2], "b": [2, 3]}, index=["tiger", "zebra"]) >>> df a b tiger 1 2 zebra 2 3 >>> df.sem() a 0.5 b 0.5 dtype: float64
Using axis=1
>>> df.sem(axis=1) tiger 0.5 zebra 0.5 dtype: float64
In this case, numeric_only should be set to True to avoid getting an error.
>>> df = pd.DataFrame({"a": [1, 2], "b": ["T", "Z"]}, index=["tiger", "zebra"]) >>> df.sem(numeric_only=True) a 0.5 dtype: float64