pandas.DataFrame.kurtosis#
- DataFrame.kurtosis(*, axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
- axis{index (0), columns (1)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- Series or scalar
Unbiased kurtosis over requested axis.
See also
Dataframe.kurtosis
Returns unbiased kurtosis over requested axis.
Examples
>>> s = pd.Series([1, 2, 2, 3], index=["cat", "dog", "dog", "mouse"]) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5
With a DataFrame
>>> df = pd.DataFrame( ... {"a": [1, 2, 2, 3], "b": [3, 4, 4, 4]}, ... index=["cat", "dog", "dog", "mouse"], ... ) >>> df a b cat 1 3 dog 2 4 dog 2 4 mouse 3 4 >>> df.kurt() a 1.5 b 4.0 dtype: float64
With axis=None
>>> df.kurt(axis=None).round(6) -0.988693
Using axis=1
>>> df = pd.DataFrame( ... {"a": [1, 2], "b": [3, 4], "c": [3, 4], "d": [1, 2]}, ... index=["cat", "dog"], ... ) >>> df.kurt(axis=1) cat -6.0 dog -6.0 dtype: float64