pandas.DataFrame.nlargest#
- DataFrame.nlargest(n, columns, keep='first')[source]#
Return the first n rows ordered by columns in descending order.
Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to
df.sort_values(columns, ascending=False).head(n)
, but more performant.- Parameters:
- nint
Number of rows to return.
- columnslabel or list of labels
Column label(s) to order by.
- keep{‘first’, ‘last’, ‘all’}, default ‘first’
Where there are duplicate values:
first
: prioritize the first occurrence(s)last
: prioritize the last occurrence(s)all
: keep all the ties of the smallest item even if it means selecting more thann
items.
- Returns:
- DataFrame
The first n rows ordered by the given columns in descending order.
See also
DataFrame.nsmallest
Return the first n rows ordered by columns in ascending order.
DataFrame.sort_values
Sort DataFrame by the values.
DataFrame.head
Return the first n rows without re-ordering.
Notes
This function cannot be used with all column types. For example, when specifying columns with object or category dtypes,
TypeError
is raised.Examples
>>> df = pd.DataFrame( ... { ... "population": [ ... 59000000, ... 65000000, ... 434000, ... 434000, ... 434000, ... 337000, ... 11300, ... 11300, ... 11300, ... ], ... "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], ... "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], ... }, ... index=[ ... "Italy", ... "France", ... "Malta", ... "Maldives", ... "Brunei", ... "Iceland", ... "Nauru", ... "Tuvalu", ... "Anguilla", ... ], ... ) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
In the following example, we will use
nlargest
to select the three rows having the largest values in column “population”.>>> df.nlargest(3, "population") population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT
When using
keep='last'
, ties are resolved in reverse order:>>> df.nlargest(3, "population", keep="last") population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN
When using
keep='all'
, the number of element kept can go beyondn
if there are duplicate values for the smallest element, all the ties are kept:>>> df.nlargest(3, "population", keep="all") population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN
However,
nlargest
does not keepn
distinct largest elements:>>> df.nlargest(5, "population", keep="all") population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN
To order by the largest values in column “population” and then “GDP”, we can specify multiple columns like in the next example.
>>> df.nlargest(3, ["population", "GDP"]) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN