Working with missing data#
Values considered “missing”#
pandas uses different sentinel values to represent a missing (also referred to as NA) depending on the data type.
numpy.nan
for NumPy data types. The disadvantage of using NumPy data types
is that the original data type will be coerced to np.float64
or object
.
In [1]: pd.Series([1, 2], dtype=np.int64).reindex([0, 1, 2])
Out[1]:
0 1.0
1 2.0
2 NaN
dtype: float64
In [2]: pd.Series([True, False], dtype=np.bool_).reindex([0, 1, 2])
Out[2]:
0 True
1 False
2 NaN
dtype: object
NaT
for NumPy np.datetime64
, np.timedelta64
, and PeriodDtype
. For typing applications,
use api.typing.NaTType
.
In [3]: pd.Series([1, 2], dtype=np.dtype("timedelta64[ns]")).reindex([0, 1, 2])
Out[3]:
0 0 days 00:00:00.000000001
1 0 days 00:00:00.000000002
2 NaT
dtype: timedelta64[ns]
In [4]: pd.Series([1, 2], dtype=np.dtype("datetime64[ns]")).reindex([0, 1, 2])
Out[4]:
0 1970-01-01 00:00:00.000000001
1 1970-01-01 00:00:00.000000002
2 NaT
dtype: datetime64[ns]
In [5]: pd.Series(["2020", "2020"], dtype=pd.PeriodDtype("D")).reindex([0, 1, 2])
Out[5]:
0 2020-01-01
1 2020-01-01
2 NaT
dtype: period[D]
NA
for StringDtype
, Int64Dtype
(and other bit widths),
Float64Dtype
(and other bit widths), BooleanDtype
and ArrowDtype
.
These types will maintain the original data type of the data.
For typing applications, use api.typing.NAType
.
In [6]: pd.Series([1, 2], dtype="Int64").reindex([0, 1, 2])
Out[6]:
0 1
1 2
2 <NA>
dtype: Int64
In [7]: pd.Series([True, False], dtype="boolean[pyarrow]").reindex([0, 1, 2])
Out[7]:
0 True
1 False
2 <NA>
dtype: bool[pyarrow]
To detect these missing value, use the isna()
or notna()
methods.
In [8]: ser = pd.Series([pd.Timestamp("2020-01-01"), pd.NaT])
In [9]: ser
Out[9]:
0 2020-01-01
1 NaT
dtype: datetime64[s]
In [10]: pd.isna(ser)
Out[10]:
0 False
1 True
dtype: bool
Note
isna()
or notna()
will also consider None
a missing value.
In [11]: ser = pd.Series([1, None], dtype=object)
In [12]: ser
Out[12]:
0 1
1 None
dtype: object
In [13]: pd.isna(ser)
Out[13]:
0 False
1 True
dtype: bool
Warning
Equality comparisons between np.nan
, NaT
, and NA
do not act like None
In [14]: None == None # noqa: E711
Out[14]: True
In [15]: np.nan == np.nan
Out[15]: False
In [16]: pd.NaT == pd.NaT
Out[16]: False
In [17]: pd.NA == pd.NA
Out[17]: <NA>
Therefore, an equality comparison between a DataFrame
or Series
with one of these missing values does not provide the same information as
isna()
or notna()
.
In [18]: ser = pd.Series([True, None], dtype="boolean[pyarrow]")
In [19]: ser == pd.NA
Out[19]:
0 <NA>
1 <NA>
dtype: bool[pyarrow]
In [20]: pd.isna(ser)
Out[20]:
0 False
1 True
dtype: bool
NA
semantics#
Warning
Experimental: the behaviour of NA
can still change without warning.
Starting from pandas 1.0, an experimental NA
value (singleton) is
available to represent scalar missing values. The goal of NA
is provide a
“missing” indicator that can be used consistently across data types
(instead of np.nan
, None
or pd.NaT
depending on the data type).
For example, when having missing values in a Series
with the nullable integer
dtype, it will use NA
:
In [21]: s = pd.Series([1, 2, None], dtype="Int64")
In [22]: s
Out[22]:
0 1
1 2
2 <NA>
dtype: Int64
In [23]: s[2]
Out[23]: <NA>
In [24]: s[2] is pd.NA
Out[24]: True
Currently, pandas does not use those data types using NA
by default in
a DataFrame
or Series
, so you need to specify
the dtype explicitly. An easy way to convert to those dtypes is explained in the
conversion section.
Propagation in arithmetic and comparison operations#
In general, missing values propagate in operations involving NA
. When
one of the operands is unknown, the outcome of the operation is also unknown.
For example, NA
propagates in arithmetic operations, similarly to
np.nan
:
In [25]: pd.NA + 1
Out[25]: <NA>
In [26]: "a" * pd.NA
Out[26]: <NA>
There are a few special cases when the result is known, even when one of the
operands is NA
.
In [27]: pd.NA ** 0
Out[27]: 1
In [28]: 1 ** pd.NA
Out[28]: 1
In equality and comparison operations, NA
also propagates. This deviates
from the behaviour of np.nan
, where comparisons with np.nan
always
return False
.
In [29]: pd.NA == 1
Out[29]: <NA>
In [30]: pd.NA == pd.NA
Out[30]: <NA>
In [31]: pd.NA < 2.5
Out[31]: <NA>
To check if a value is equal to NA
, use isna()
In [32]: pd.isna(pd.NA)
Out[32]: True
Note
An exception on this basic propagation rule are reductions (such as the mean or the minimum), where pandas defaults to skipping missing values. See the calculation section for more.
Logical operations#
For logical operations, NA
follows the rules of the
three-valued logic (or
Kleene logic, similarly to R, SQL and Julia). This logic means to only
propagate missing values when it is logically required.
For example, for the logical “or” operation (|
), if one of the operands
is True
, we already know the result will be True
, regardless of the
other value (so regardless the missing value would be True
or False
).
In this case, NA
does not propagate:
In [33]: True | False
Out[33]: True
In [34]: True | pd.NA
Out[34]: True
In [35]: pd.NA | True
Out[35]: True
On the other hand, if one of the operands is False
, the result depends
on the value of the other operand. Therefore, in this case NA
propagates:
In [36]: False | True
Out[36]: True
In [37]: False | False
Out[37]: False
In [38]: False | pd.NA
Out[38]: <NA>
The behaviour of the logical “and” operation (&
) can be derived using
similar logic (where now NA
will not propagate if one of the operands
is already False
):
In [39]: False & True
Out[39]: False
In [40]: False & False
Out[40]: False
In [41]: False & pd.NA
Out[41]: False
In [42]: True & True
Out[42]: True
In [43]: True & False
Out[43]: False
In [44]: True & pd.NA
Out[44]: <NA>
NA
in a boolean context#
Since the actual value of an NA is unknown, it is ambiguous to convert NA to a boolean value.
In [45]: bool(pd.NA)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[45], line 1
----> 1 bool(pd.NA)
File missing.pyx:388, in pandas._libs.missing.NAType.__bool__()
TypeError: boolean value of NA is ambiguous
This also means that NA
cannot be used in a context where it is
evaluated to a boolean, such as if condition: ...
where condition
can
potentially be NA
. In such cases, isna()
can be used to check
for NA
or condition
being NA
can be avoided, for example by
filling missing values beforehand.
A similar situation occurs when using Series
or DataFrame
objects in if
statements, see Using if/truth statements with pandas.
NumPy ufuncs#
pandas.NA
implements NumPy’s __array_ufunc__
protocol. Most ufuncs
work with NA
, and generally return NA
:
In [46]: np.log(pd.NA)
Out[46]: <NA>
In [47]: np.add(pd.NA, 1)
Out[47]: <NA>
Warning
Currently, ufuncs involving an ndarray and NA
will return an
object-dtype filled with NA values.
In [48]: a = np.array([1, 2, 3])
In [49]: np.greater(a, pd.NA)
Out[49]: array([<NA>, <NA>, <NA>], dtype=object)
The return type here may change to return a different array type in the future.
See DataFrame interoperability with NumPy functions for more on ufuncs.
Conversion#
If you have a DataFrame
or Series
using np.nan
,
DataFrame.convert_dtypes()
and Series.convert_dtypes()
, respectively,
will convert your data to use the nullable data types supporting NA
,
such as Int64Dtype
or ArrowDtype
. This is especially helpful after reading
in data sets from IO methods where data types were inferred.
In this example, while the dtypes of all columns are changed, we show the results for the first 10 columns.
In [50]: import io
In [51]: data = io.StringIO("a,b\n,True\n2,")
In [52]: df = pd.read_csv(data)
In [53]: df.dtypes
Out[53]:
a float64
b object
dtype: object
In [54]: df_conv = df.convert_dtypes()
In [55]: df_conv
Out[55]:
a b
0 <NA> True
1 2 <NA>
In [56]: df_conv.dtypes
Out[56]:
a Int64
b boolean
dtype: object
Inserting missing data#
You can insert missing values by simply assigning to a Series
or DataFrame
.
The missing value sentinel used will be chosen based on the dtype.
In [57]: ser = pd.Series([1., 2., 3.])
In [58]: ser.loc[0] = None
In [59]: ser
Out[59]:
0 NaN
1 2.0
2 3.0
dtype: float64
In [60]: ser = pd.Series([pd.Timestamp("2021"), pd.Timestamp("2021")])
In [61]: ser.iloc[0] = np.nan
In [62]: ser
Out[62]:
0 NaT
1 2021-01-01
dtype: datetime64[s]
In [63]: ser = pd.Series([True, False], dtype="boolean[pyarrow]")
In [64]: ser.iloc[0] = None
In [65]: ser
Out[65]:
0 <NA>
1 False
dtype: bool[pyarrow]
For object
types, pandas will use the value given:
In [66]: s = pd.Series(["a", "b", "c"], dtype=object)
In [67]: s.loc[0] = None
In [68]: s.loc[1] = np.nan
In [69]: s
Out[69]:
0 None
1 NaN
2 c
dtype: object
Calculations with missing data#
Missing values propagate through arithmetic operations between pandas objects.
In [70]: ser1 = pd.Series([np.nan, np.nan, 2, 3])
In [71]: ser2 = pd.Series([np.nan, 1, np.nan, 4])
In [72]: ser1
Out[72]:
0 NaN
1 NaN
2 2.0
3 3.0
dtype: float64
In [73]: ser2
Out[73]:
0 NaN
1 1.0
2 NaN
3 4.0
dtype: float64
In [74]: ser1 + ser2
Out[74]:
0 NaN
1 NaN
2 NaN
3 7.0
dtype: float64
The descriptive statistics and computational methods discussed in the data structure overview (and listed here and here) all account for missing data.
When summing data, NA values or empty data will be treated as zero.
In [75]: pd.Series([np.nan]).sum()
Out[75]: 0.0
In [76]: pd.Series([], dtype="float64").sum()
Out[76]: 0.0
When taking the product, NA values or empty data will be treated as 1.
In [77]: pd.Series([np.nan]).prod()
Out[77]: 1.0
In [78]: pd.Series([], dtype="float64").prod()
Out[78]: 1.0
Cumulative methods like cumsum()
and cumprod()
ignore NA values by default, but preserve them in the resulting array. To override
this behaviour and include NA values in the calculation, use skipna=False
.
In [79]: ser = pd.Series([1, np.nan, 3, np.nan])
In [80]: ser
Out[80]:
0 1.0
1 NaN
2 3.0
3 NaN
dtype: float64
In [81]: ser.cumsum()
Out[81]:
0 1.0
1 NaN
2 4.0
3 NaN
dtype: float64
In [82]: ser.cumsum(skipna=False)
Out[82]:
0 1.0
1 NaN
2 NaN
3 NaN
dtype: float64
Dropping missing data#
dropna()
drops rows or columns with missing data.
In [83]: df = pd.DataFrame([[np.nan, 1, 2], [1, 2, np.nan], [1, 2, 3]])
In [84]: df
Out[84]:
0 1 2
0 NaN 1 2.0
1 1.0 2 NaN
2 1.0 2 3.0
In [85]: df.dropna()
Out[85]:
0 1 2
2 1.0 2 3.0
In [86]: df.dropna(axis=1)
Out[86]:
1
0 1
1 2
2 2
In [87]: ser = pd.Series([1, pd.NA], dtype="int64[pyarrow]")
In [88]: ser.dropna()
Out[88]:
0 1
dtype: int64[pyarrow]
Filling missing data#
Filling by value#
fillna()
replaces NA values with non-NA data.
Replace NA with a scalar value
In [89]: data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")}
In [90]: df = pd.DataFrame(data)
In [91]: df
Out[91]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
In [92]: df.fillna(0)
Out[92]:
np arrow
0 1.0 1.0
1 0.0 0.0
2 0.0 0.0
3 2.0 2.0
When the data has object dtype, you can control what type of NA values are present.
In [93]: df = pd.DataFrame({"a": [pd.NA, np.nan, None]}, dtype=object)
In [94]: df
Out[94]:
a
0 <NA>
1 NaN
2 None
In [95]: df.fillna(None)
Out[95]:
a
0 None
1 None
2 None
In [96]: df.fillna(np.nan)
Out[96]:
a
0 NaN
1 NaN
2 NaN
In [97]: df.fillna(pd.NA)
Out[97]:
a
0 <NA>
1 <NA>
2 <NA>
However when the dtype is not object, these will all be replaced with the proper NA value for the dtype.
In [98]: data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")}
In [99]: df = pd.DataFrame(data)
In [100]: df
Out[100]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
In [101]: df.fillna(None)
Out[101]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
In [102]: df.fillna(np.nan)
Out[102]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
In [103]: df.fillna(pd.NA)
Out[103]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
Fill gaps forward or backward
In [104]: df.ffill()
Out[104]:
np arrow
0 1.0 1.0
1 1.0 1.0
2 1.0 1.0
3 2.0 2.0
In [105]: df.bfill()
Out[105]:
np arrow
0 1.0 1.0
1 2.0 2.0
2 2.0 2.0
3 2.0 2.0
Limit the number of NA values filled
In [106]: df.ffill(limit=1)
Out[106]:
np arrow
0 1.0 1.0
1 1.0 1.0
2 NaN <NA>
3 2.0 2.0
NA values can be replaced with corresponding value from a Series
or DataFrame
where the index and column aligns between the original object and the filled object.
In [107]: dff = pd.DataFrame(np.arange(30, dtype=np.float64).reshape(10, 3), columns=list("ABC"))
In [108]: dff.iloc[3:5, 0] = np.nan
In [109]: dff.iloc[4:6, 1] = np.nan
In [110]: dff.iloc[5:8, 2] = np.nan
In [111]: dff
Out[111]:
A B C
0 0.0 1.0 2.0
1 3.0 4.0 5.0
2 6.0 7.0 8.0
3 NaN 10.0 11.0
4 NaN NaN 14.0
5 15.0 NaN NaN
6 18.0 19.0 NaN
7 21.0 22.0 NaN
8 24.0 25.0 26.0
9 27.0 28.0 29.0
In [112]: dff.fillna(dff.mean())
Out[112]:
A B C
0 0.00 1.0 2.000000
1 3.00 4.0 5.000000
2 6.00 7.0 8.000000
3 14.25 10.0 11.000000
4 14.25 14.5 14.000000
5 15.00 14.5 13.571429
6 18.00 19.0 13.571429
7 21.00 22.0 13.571429
8 24.00 25.0 26.000000
9 27.00 28.0 29.000000
Note
DataFrame.where()
can also be used to fill NA values.Same result as above.
In [113]: dff.where(pd.notna(dff), dff.mean(), axis="columns")
Out[113]:
A B C
0 0.00 1.0 2.000000
1 3.00 4.0 5.000000
2 6.00 7.0 8.000000
3 14.25 10.0 11.000000
4 14.25 14.5 14.000000
5 15.00 14.5 13.571429
6 18.00 19.0 13.571429
7 21.00 22.0 13.571429
8 24.00 25.0 26.000000
9 27.00 28.0 29.000000
Interpolation#
DataFrame.interpolate()
and Series.interpolate()
fills NA values
using various interpolation methods.
In [114]: df = pd.DataFrame(
.....: {
.....: "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
.....: "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
.....: }
.....: )
.....:
In [115]: df
Out[115]:
A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [116]: df.interpolate()
Out[116]:
A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [117]: idx = pd.date_range("2020-01-01", periods=10, freq="D")
In [118]: data = np.random.default_rng(2).integers(0, 10, 10).astype(np.float64)
In [119]: ts = pd.Series(data, index=idx)
In [120]: ts.iloc[[1, 2, 5, 6, 9]] = np.nan
In [121]: ts
Out[121]:
2020-01-01 8.0
2020-01-02 NaN
2020-01-03 NaN
2020-01-04 2.0
2020-01-05 4.0
2020-01-06 NaN
2020-01-07 NaN
2020-01-08 0.0
2020-01-09 3.0
2020-01-10 NaN
Freq: D, dtype: float64
In [122]: ts.plot()
Out[122]: <Axes: >
In [123]: ts.interpolate()
Out[123]:
2020-01-01 8.000000
2020-01-02 6.000000
2020-01-03 4.000000
2020-01-04 2.000000
2020-01-05 4.000000
2020-01-06 2.666667
2020-01-07 1.333333
2020-01-08 0.000000
2020-01-09 3.000000
2020-01-10 3.000000
Freq: D, dtype: float64
In [124]: ts.interpolate().plot()
Out[124]: <Axes: >
Interpolation relative to a Timestamp
in the DatetimeIndex
is available by setting method="time"
In [125]: ts2 = ts.iloc[[0, 1, 3, 7, 9]]
In [126]: ts2
Out[126]:
2020-01-01 8.0
2020-01-02 NaN
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 NaN
dtype: float64
In [127]: ts2.interpolate()
Out[127]:
2020-01-01 8.0
2020-01-02 6.0
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 0.0
dtype: float64
In [128]: ts2.interpolate(method="time")
Out[128]:
2020-01-01 8.0
2020-01-02 6.0
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 0.0
dtype: float64
For a floating-point index, use method='values'
:
In [129]: idx = [0.0, 1.0, 10.0]
In [130]: ser = pd.Series([0.0, np.nan, 10.0], idx)
In [131]: ser
Out[131]:
0.0 0.0
1.0 NaN
10.0 10.0
dtype: float64
In [132]: ser.interpolate()
Out[132]:
0.0 0.0
1.0 1.0
10.0 10.0
dtype: float64
In [133]: ser.interpolate(method="values")
Out[133]:
0.0 0.0
1.0 1.0
10.0 10.0
dtype: float64
If you have scipy installed, you can pass the name of a 1-d interpolation routine to method
.
as specified in the scipy interpolation documentation and reference guide.
The appropriate interpolation method will depend on the data type.
Tip
If you are dealing with a time series that is growing at an increasing rate,
use method='barycentric'
.
If you have values approximating a cumulative distribution function,
use method='pchip'
.
To fill missing values with goal of smooth plotting use method='akima'
.
In [134]: df = pd.DataFrame(
.....: {
.....: "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
.....: "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
.....: }
.....: )
.....:
In [135]: df
Out[135]:
A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [136]: df.interpolate(method="barycentric")
Out[136]:
A B
0 1.00 0.250
1 2.10 -7.660
2 3.53 -4.515
3 4.70 4.000
4 5.60 12.200
5 6.80 14.400
In [137]: df.interpolate(method="pchip")
Out[137]:
A B
0 1.00000 0.250000
1 2.10000 0.672808
2 3.43454 1.928950
3 4.70000 4.000000
4 5.60000 12.200000
5 6.80000 14.400000
In [138]: df.interpolate(method="akima")
Out[138]:
A B
0 1.000000 0.250000
1 2.100000 -0.873316
2 3.406667 0.320034
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:
In [139]: df.interpolate(method="spline", order=2)
Out[139]:
A B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
In [140]: df.interpolate(method="polynomial", order=2)
Out[140]:
A B
0 1.000000 0.250000
1 2.100000 -2.703846
2 3.451351 -1.453846
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
Comparing several methods.
In [141]: np.random.seed(2)
In [142]: ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37))
In [143]: missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
In [144]: ser.iloc[missing] = np.nan
In [145]: methods = ["linear", "quadratic", "cubic"]
In [146]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
In [147]: df.plot()
Out[147]: <Axes: >
Interpolating new observations from expanding data with Series.reindex()
.
In [148]: ser = pd.Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
In [149]: new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]))
In [150]: interp_s = ser.reindex(new_index).interpolate(method="pchip")
In [151]: interp_s.loc[49:51]
Out[151]:
49.00 0.471410
49.25 0.476841
49.50 0.481780
49.75 0.485998
50.00 0.489266
50.25 0.491814
50.50 0.493995
50.75 0.495763
51.00 0.497074
dtype: float64
Interpolation limits#
interpolate()
accepts a limit
keyword
argument to limit the number of consecutive NaN
values
filled since the last valid observation
In [152]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan])
In [153]: ser
Out[153]:
0 NaN
1 NaN
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64
In [154]: ser.interpolate()
Out[154]:
0 NaN
1 NaN
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64
In [155]: ser.interpolate(limit=1)
Out[155]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 NaN
6 13.0
7 13.0
8 NaN
dtype: float64
By default, NaN
values are filled in a forward
direction. Use
limit_direction
parameter to fill backward
or from both
directions.
In [156]: ser.interpolate(limit=1, limit_direction="backward")
Out[156]:
0 NaN
1 5.0
2 5.0
3 NaN
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64
In [157]: ser.interpolate(limit=1, limit_direction="both")
Out[157]:
0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 13.0
8 NaN
dtype: float64
In [158]: ser.interpolate(limit_direction="both")
Out[158]:
0 5.0
1 5.0
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64
By default, NaN
values are filled whether they are surrounded by
existing valid values or outside existing valid values. The limit_area
parameter restricts filling to either inside or outside values.
# fill one consecutive inside value in both directions
In [159]: ser.interpolate(limit_direction="both", limit_area="inside", limit=1)
Out[159]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64
# fill all consecutive outside values backward
In [160]: ser.interpolate(limit_direction="backward", limit_area="outside")
Out[160]:
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64
# fill all consecutive outside values in both directions
In [161]: ser.interpolate(limit_direction="both", limit_area="outside")
Out[161]:
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 13.0
8 13.0
dtype: float64
Replacing values#
Series.replace()
and DataFrame.replace()
can be used similar to
Series.fillna()
and DataFrame.fillna()
to replace or insert missing values.
In [162]: df = pd.DataFrame(np.eye(3))
In [163]: df
Out[163]:
0 1 2
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
In [164]: df_missing = df.replace(0, np.nan)
In [165]: df_missing
Out[165]:
0 1 2
0 1.0 NaN NaN
1 NaN 1.0 NaN
2 NaN NaN 1.0
In [166]: df_filled = df_missing.replace(np.nan, 2)
In [167]: df_filled
Out[167]:
0 1 2
0 1.0 2.0 2.0
1 2.0 1.0 2.0
2 2.0 2.0 1.0
Replacing more than one value is possible by passing a list.
In [168]: df_filled.replace([1, 44], [2, 28])
Out[168]:
0 1 2
0 2.0 2.0 2.0
1 2.0 2.0 2.0
2 2.0 2.0 2.0
Replacing using a mapping dict.
In [169]: df_filled.replace({1: 44, 2: 28})
Out[169]:
0 1 2
0 44.0 28.0 28.0
1 28.0 44.0 28.0
2 28.0 28.0 44.0
Regular expression replacement#
Note
Python strings prefixed with the r
character such as r'hello world'
are “raw” strings.
They have different semantics regarding backslashes than strings without this prefix.
Backslashes in raw strings will be interpreted as an escaped backslash, e.g., r'\' == '\\'
.
Replace the ‘.’ with NaN
In [170]: d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
In [171]: df = pd.DataFrame(d)
In [172]: df.replace(".", np.nan)
Out[172]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
Replace the ‘.’ with NaN
with regular expression that removes surrounding whitespace
In [173]: df.replace(r"\s*\.\s*", np.nan, regex=True)
Out[173]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
Replace with a list of regexes.
In [174]: df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True)
Out[174]:
a b c
0 0 astuff astuff
1 1 b b
2 2 dot NaN
3 3 dot d
Replace with a regex in a mapping dict.
In [175]: df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)
Out[175]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
Pass nested dictionaries of regular expressions that use the regex
keyword.
In [176]: df.replace({"b": {"b": r""}}, regex=True)
Out[176]:
a b c
0 0 a a
1 1 b
2 2 . NaN
3 3 . d
In [177]: df.replace(regex={"b": {r"\s*\.\s*": np.nan}})
Out[177]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
In [178]: df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)
Out[178]:
a b c
0 0 a a
1 1 b b
2 2 .ty NaN
3 3 .ty d
Pass a list of regular expressions that will replace matches with a scalar.
In [179]: df.replace([r"\s*\.\s*", r"a|b"], "placeholder", regex=True)
Out[179]:
a b c
0 0 placeholder placeholder
1 1 placeholder placeholder
2 2 placeholder NaN
3 3 placeholder d
All of the regular expression examples can also be passed with the
to_replace
argument as the regex
argument. In this case the value
argument must be passed explicitly by name or regex
must be a nested
dictionary.
In [180]: df.replace(regex=[r"\s*\.\s*", r"a|b"], value="placeholder")
Out[180]:
a b c
0 0 placeholder placeholder
1 1 placeholder placeholder
2 2 placeholder NaN
3 3 placeholder d
Note
A regular expression object from re.compile
is a valid input as well.