Merge, join, concatenate and compare#

pandas provides various methods for combining and comparing Series or DataFrame.

concat()#

The concat() function concatenates an arbitrary amount of Series or DataFrame objects along an axis while performing optional set logic (union or intersection) of the indexes on the other axes. Like numpy.concatenate, concat() takes a list or dict of homogeneously-typed objects and concatenates them.

In [1]: df1 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A0", "A1", "A2", "A3"],
   ...:         "B": ["B0", "B1", "B2", "B3"],
   ...:         "C": ["C0", "C1", "C2", "C3"],
   ...:         "D": ["D0", "D1", "D2", "D3"],
   ...:     },
   ...:     index=[0, 1, 2, 3],
   ...: )
   ...: 

In [2]: df2 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A4", "A5", "A6", "A7"],
   ...:         "B": ["B4", "B5", "B6", "B7"],
   ...:         "C": ["C4", "C5", "C6", "C7"],
   ...:         "D": ["D4", "D5", "D6", "D7"],
   ...:     },
   ...:     index=[4, 5, 6, 7],
   ...: )
   ...: 

In [3]: df3 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A8", "A9", "A10", "A11"],
   ...:         "B": ["B8", "B9", "B10", "B11"],
   ...:         "C": ["C8", "C9", "C10", "C11"],
   ...:         "D": ["D8", "D9", "D10", "D11"],
   ...:     },
   ...:     index=[8, 9, 10, 11],
   ...: )
   ...: 

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

In [6]: result
Out[6]: 
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11

../_images/merging_concat_basic.png

Note

concat() makes a full copy of the data, and iteratively reusing concat() can create unnecessary copies. Collect all DataFrame or Series objects in a list before using concat().

frames = [process_your_file(f) for f in files]
result = pd.concat(frames)

Note

When concatenating DataFrame with named axes, pandas will attempt to preserve these index/column names whenever possible. In the case where all inputs share a common name, this name will be assigned to the result. When the input names do not all agree, the result will be unnamed. The same is true for MultiIndex, but the logic is applied separately on a level-by-level basis.

Joining logic of the resulting axis#

The join keyword specifies how to handle axis values that don’t exist in the first DataFrame.

join='outer' takes the union of all axis values

In [7]: df4 = pd.DataFrame(
   ...:     {
   ...:         "B": ["B2", "B3", "B6", "B7"],
   ...:         "D": ["D2", "D3", "D6", "D7"],
   ...:         "F": ["F2", "F3", "F6", "F7"],
   ...:     },
   ...:     index=[2, 3, 6, 7],
   ...: )
   ...: 

In [8]: result = pd.concat([df1, df4], axis=1)

In [9]: result
Out[9]: 
     A    B    C    D    B    D    F
0   A0   B0   C0   D0  NaN  NaN  NaN
1   A1   B1   C1   D1  NaN  NaN  NaN
2   A2   B2   C2   D2   B2   D2   F2
3   A3   B3   C3   D3   B3   D3   F3
6  NaN  NaN  NaN  NaN   B6   D6   F6
7  NaN  NaN  NaN  NaN   B7   D7   F7

../_images/merging_concat_axis1.png

join='inner' takes the intersection of the axis values

In [10]: result = pd.concat([df1, df4], axis=1, join="inner")

In [11]: result
Out[11]: 
    A   B   C   D   B   D   F
2  A2  B2  C2  D2  B2  D2  F2
3  A3  B3  C3  D3  B3  D3  F3

../_images/merging_concat_axis1_inner.png

To perform an effective “left” join using the exact index from the original DataFrame, result can be reindexed.

In [12]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)

In [13]: result
Out[13]: 
    A   B   C   D    B    D    F
0  A0  B0  C0  D0  NaN  NaN  NaN
1  A1  B1  C1  D1  NaN  NaN  NaN
2  A2  B2  C2  D2   B2   D2   F2
3  A3  B3  C3  D3   B3   D3   F3

../_images/merging_concat_axis1_join_axes.png

Ignoring indexes on the concatenation axis#

For DataFrame objects which don’t have a meaningful index, the ignore_index ignores overlapping indexes.

In [14]: result = pd.concat([df1, df4], ignore_index=True, sort=False)

In [15]: result
Out[15]: 
     A   B    C   D    F
0   A0  B0   C0  D0  NaN
1   A1  B1   C1  D1  NaN
2   A2  B2   C2  D2  NaN
3   A3  B3   C3  D3  NaN
4  NaN  B2  NaN  D2   F2
5  NaN  B3  NaN  D3   F3
6  NaN  B6  NaN  D6   F6
7  NaN  B7  NaN  D7   F7

../_images/merging_concat_ignore_index.png

Concatenating Series and DataFrame together#

You can concatenate a mix of Series and DataFrame objects. The Series will be transformed to DataFrame with the column name as the name of the Series.

In [16]: s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")

In [17]: result = pd.concat([df1, s1], axis=1)

In [18]: result
Out[18]: 
    A   B   C   D   X
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

../_images/merging_concat_mixed_ndim.png

Unnamed Series will be numbered consecutively.

In [19]: s2 = pd.Series(["_0", "_1", "_2", "_3"])

In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)

In [21]: result
Out[21]: 
    A   B   C   D   0   1   2
0  A0  B0  C0  D0  _0  _0  _0
1  A1  B1  C1  D1  _1  _1  _1
2  A2  B2  C2  D2  _2  _2  _2
3  A3  B3  C3  D3  _3  _3  _3

../_images/merging_concat_unnamed_series.png

ignore_index=True will drop all name references.

In [22]: result = pd.concat([df1, s1], axis=1, ignore_index=True)

In [23]: result
Out[23]: 
    0   1   2   3   4
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

../_images/merging_concat_series_ignore_index.png

Resulting keys#

The keys argument adds another axis level to the resulting index or column (creating a MultiIndex) associate specific keys with each original DataFrame.

In [24]: result = pd.concat(frames, keys=["x", "y", "z"])

In [25]: result
Out[25]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

In [26]: result.loc["y"]
Out[26]: 
    A   B   C   D
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

../_images/merging_concat_keys.png

The keys argument can override the column names when creating a new DataFrame based on existing Series.

In [27]: s3 = pd.Series([0, 1, 2, 3], name="foo")

In [28]: s4 = pd.Series([0, 1, 2, 3])

In [29]: s5 = pd.Series([0, 1, 4, 5])

In [30]: pd.concat([s3, s4, s5], axis=1)
Out[30]: 
   foo  0  1
0    0  0  0
1    1  1  1
2    2  2  4
3    3  3  5

In [31]: pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
Out[31]: 
   red  blue  yellow
0    0     0       0
1    1     1       1
2    2     2       4
3    3     3       5

You can also pass a dict to concat() in which case the dict keys will be used for the keys argument unless other keys argument is specified:

In [32]: pieces = {"x": df1, "y": df2, "z": df3}

In [33]: result = pd.concat(pieces)

In [34]: result
Out[34]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

../_images/merging_concat_dict.png
In [35]: result = pd.concat(pieces, keys=["z", "y"])

In [36]: result
Out[36]: 
        A    B    C    D
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7

../_images/merging_concat_dict_keys.png

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:

In [37]: result.index.levels
Out[37]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])

levels argument allows specifying resulting levels associated with the keys

In [38]: result = pd.concat(
   ....:     pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
   ....: )
   ....: 

In [39]: result
Out[39]: 
                A    B    C    D
group_key                       
x         0    A0   B0   C0   D0
          1    A1   B1   C1   D1
          2    A2   B2   C2   D2
          3    A3   B3   C3   D3
y         4    A4   B4   C4   D4
          5    A5   B5   C5   D5
          6    A6   B6   C6   D6
          7    A7   B7   C7   D7
z         8    A8   B8   C8   D8
          9    A9   B9   C9   D9
          10  A10  B10  C10  D10
          11  A11  B11  C11  D11

../_images/merging_concat_dict_keys_names.png
In [40]: result.index.levels
Out[40]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

Appending rows to a DataFrame#

If you have a Series that you want to append as a single row to a DataFrame, you can convert the row into a DataFrame and use concat()

In [41]: s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])

In [42]: result = pd.concat([df1, s2.to_frame().T], ignore_index=True)

In [43]: result
Out[43]: 
    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  X0  X1  X2  X3

../_images/merging_append_series_as_row.png

merge()#

merge() performs join operations similar to relational databases like SQL. Users who are familiar with SQL but new to pandas can reference a comparison with SQL.

Merge types#

merge() implements common SQL style joining operations.

  • one-to-one: joining two DataFrame objects on their indexes which must contain unique values.

  • many-to-one: joining a unique index to one or more columns in a different DataFrame.

  • many-to-many : joining columns on columns.

Note

When joining columns on columns, potentially a many-to-many join, any indexes on the passed DataFrame objects will be discarded.

For a many-to-many join, if a key combination appears more than once in both tables, the DataFrame will have the Cartesian product of the associated data.

In [44]: left = pd.DataFrame(
   ....:     {
   ....:         "key": ["K0", "K1", "K2", "K3"],
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:     }
   ....: )
   ....: 

In [45]: right = pd.DataFrame(
   ....:     {
   ....:         "key": ["K0", "K1", "K2", "K3"],
   ....:         "C": ["C0", "C1", "C2", "C3"],
   ....:         "D": ["D0", "D1", "D2", "D3"],
   ....:     }
   ....: )
   ....: 

In [46]: result = pd.merge(left, right, on="key")

In [47]: result
Out[47]: 
  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

../_images/merging_merge_on_key.png

The how argument to merge() specifies which keys are included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a summary of the how options and their SQL equivalent names:

Merge method

SQL Join Name

Description

left

LEFT OUTER JOIN

Use keys from left frame only

right

RIGHT OUTER JOIN

Use keys from right frame only

outer

FULL OUTER JOIN

Use union of keys from both frames

inner

INNER JOIN

Use intersection of keys from both frames

cross

CROSS JOIN

Create the cartesian product of rows of both frames

In [48]: left = pd.DataFrame(
   ....:    {
   ....:       "key1": ["K0", "K0", "K1", "K2"],
   ....:       "key2": ["K0", "K1", "K0", "K1"],
   ....:       "A": ["A0", "A1", "A2", "A3"],
   ....:       "B": ["B0", "B1", "B2", "B3"],
   ....:    }
   ....: )
   ....: 

In [49]: right = pd.DataFrame(
   ....:    {
   ....:       "key1": ["K0", "K1", "K1", "K2"],
   ....:       "key2": ["K0", "K0", "K0", "K0"],
   ....:       "C": ["C0", "C1", "C2", "C3"],
   ....:       "D": ["D0", "D1", "D2", "D3"],
   ....:    }
   ....: )
   ....: 

In [50]: result = pd.merge(left, right, how="left", on=["key1", "key2"])

In [51]: result
Out[51]: 
  key1 key2   A   B    C    D
0   K0   K0  A0  B0   C0   D0
1   K0   K1  A1  B1  NaN  NaN
2   K1   K0  A2  B2   C1   D1
3   K1   K0  A2  B2   C2   D2
4   K2   K1  A3  B3  NaN  NaN

../_images/merging_merge_on_key_left.png
In [52]: result = pd.merge(left, right, how="right", on=["key1", "key2"])

In [53]: result
Out[53]: 
  key1 key2    A    B   C   D
0   K0   K0   A0   B0  C0  D0
1   K1   K0   A2   B2  C1  D1
2   K1   K0   A2   B2  C2  D2
3   K2   K0  NaN  NaN  C3  D3

../_images/merging_merge_on_key_right.png
In [54]: result = pd.merge(left, right, how="outer", on=["key1", "key2"])

In [55]: result
Out[55]: 
  key1 key2    A    B    C    D
0   K0   K0   A0   B0   C0   D0
1   K0   K1   A1   B1  NaN  NaN
2   K1   K0   A2   B2   C1   D1
3   K1   K0   A2   B2   C2   D2
4   K2   K0  NaN  NaN   C3   D3
5   K2   K1   A3   B3  NaN  NaN

../_images/merging_merge_on_key_outer.png
In [56]: result = pd.merge(left, right, how="inner", on=["key1", "key2"])

In [57]: result
Out[57]: 
  key1 key2   A   B   C   D
0   K0   K0  A0  B0  C0  D0
1   K1   K0  A2  B2  C1  D1
2   K1   K0  A2  B2  C2  D2

../_images/merging_merge_on_key_inner.png
In [58]: result = pd.merge(left, right, how="cross")

In [59]: result
Out[59]: 
   key1_x key2_x   A   B key1_y key2_y   C   D
0      K0     K0  A0  B0     K0     K0  C0  D0
1      K0     K0  A0  B0     K1     K0  C1  D1
2      K0     K0  A0  B0     K1     K0  C2  D2
3      K0     K0  A0  B0     K2     K0  C3  D3
4      K0     K1  A1  B1     K0     K0  C0  D0
..    ...    ...  ..  ..    ...    ...  ..  ..
11     K1     K0  A2  B2     K2     K0  C3  D3
12     K2     K1  A3  B3     K0     K0  C0  D0
13     K2     K1  A3  B3     K1     K0  C1  D1
14     K2     K1  A3  B3     K1     K0  C2  D2
15     K2     K1  A3  B3     K2     K0  C3  D3

[16 rows x 8 columns]

../_images/merging_merge_cross.png

You can merge Series and a DataFrame with a MultiIndex if the names of the MultiIndex correspond to the columns from the DataFrame. Transform the Series to a DataFrame using Series.reset_index() before merging

In [60]: df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})

In [61]: df
Out[61]: 
  Let  Num
0   A    1
1   B    2
2   C    3

In [62]: ser = pd.Series(
   ....:     ["a", "b", "c", "d", "e", "f"],
   ....:     index=pd.MultiIndex.from_arrays(
   ....:         [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
   ....:     ),
   ....: )
   ....: 

In [63]: ser
Out[63]: 
Let  Num
A    1      a
B    2      b
C    3      c
A    4      d
B    5      e
C    6      f
dtype: object

In [64]: pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Out[64]: 
  Let  Num  0
0   A    1  a
1   B    2  b
2   C    3  c

Performing an outer join with duplicate join keys in DataFrame

In [65]: left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})

In [66]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

In [67]: result = pd.merge(left, right, on="B", how="outer")

In [68]: result
Out[68]: 
   A_x  B  A_y
0    1  2    4
1    1  2    5
2    1  2    6
3    2  2    4
4    2  2    5
5    2  2    6

../_images/merging_merge_on_key_dup.png

Warning

Merging on duplicate keys significantly increase the dimensions of the result and can cause a memory overflow.

Merge key uniqueness#

The validate argument checks whether the uniqueness of merge keys. Key uniqueness is checked before merge operations and can protect against memory overflows and unexpected key duplication.

In [69]: left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})

In [70]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

In [71]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
---------------------------------------------------------------------------
MergeError                                Traceback (most recent call last)
Cell In[71], line 1
----> 1 result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:368, in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
    354     return _cross_merge(
    355         left_df,
    356         right_df,
   (...)
    365         validate=validate,
    366     )
    367 else:
--> 368     op = _MergeOperation(
    369         left_df,
    370         right_df,
    371         how=how,
    372         on=on,
    373         left_on=left_on,
    374         right_on=right_on,
    375         left_index=left_index,
    376         right_index=right_index,
    377         sort=sort,
    378         suffixes=suffixes,
    379         indicator=indicator,
    380         validate=validate,
    381     )
    382     return op.get_result()

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:1012, in _MergeOperation.__init__(self, left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, indicator, validate)
   1008 # If argument passed to validate,
   1009 # check if columns specified as unique
   1010 # are in fact unique.
   1011 if validate is not None:
-> 1012     self._validate_validate_kwd(validate)

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:1851, in _MergeOperation._validate_validate_kwd(self, validate)
   1847         raise MergeError(
   1848             "Merge keys are not unique in left dataset; not a one-to-one merge"
   1849         )
   1850     if not right_unique:
-> 1851         raise MergeError(
   1852             "Merge keys are not unique in right dataset; not a one-to-one merge"
   1853         )
   1855 elif validate in ["one_to_many", "1:m"]:
   1856     if not left_unique:

MergeError: Merge keys are not unique in right dataset; not a one-to-one merge

If the user is aware of the duplicates in the right DataFrame but wants to ensure there are no duplicates in the left DataFrame, one can use the validate='one_to_many' argument instead, which will not raise an exception.

In [72]: pd.merge(left, right, on="B", how="outer", validate="one_to_many")
Out[72]: 
   A_x  B  A_y
0    1  1  NaN
1    2  2  4.0
2    2  2  5.0
3    2  2  6.0

Merge result indicator#

merge() accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values:

Observation Origin

_merge value

Merge key only in 'left' frame

left_only

Merge key only in 'right' frame

right_only

Merge key in both frames

both

In [73]: df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})

In [74]: df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})

In [75]: pd.merge(df1, df2, on="col1", how="outer", indicator=True)
Out[75]: 
   col1 col_left  col_right      _merge
0     0        a        NaN   left_only
1     1        b        2.0        both
2     2      NaN        2.0  right_only
3     2      NaN        2.0  right_only

A string argument to indicator will use the value as the name for the indicator column.

In [76]: pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Out[76]: 
   col1 col_left  col_right indicator_column
0     0        a        NaN        left_only
1     1        b        2.0             both
2     2      NaN        2.0       right_only
3     2      NaN        2.0       right_only

Overlapping value columns#

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrame to disambiguate the result columns:

In [77]: left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})

In [78]: right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})

In [79]: result = pd.merge(left, right, on="k")

In [80]: result
Out[80]: 
    k  v_x  v_y
0  K0    1    4
1  K0    1    5

../_images/merging_merge_overlapped.png
In [81]: result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))

In [82]: result
Out[82]: 
    k  v_l  v_r
0  K0    1    4
1  K0    1    5

../_images/merging_merge_overlapped_suffix.png

DataFrame.join()#

DataFrame.join() combines the columns of multiple, potentially differently-indexed DataFrame into a single result DataFrame.

In [83]: left = pd.DataFrame(
   ....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
   ....: )
   ....: 

In [84]: right = pd.DataFrame(
   ....:     {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
   ....: )
   ....: 

In [85]: result = left.join(right)

In [86]: result
Out[86]: 
     A   B    C    D
K0  A0  B0   C0   D0
K1  A1  B1  NaN  NaN
K2  A2  B2   C2   D2

../_images/merging_join.png
In [87]: result = left.join(right, how="outer")

In [88]: result
Out[88]: 
      A    B    C    D
K0   A0   B0   C0   D0
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3  NaN  NaN   C3   D3

../_images/merging_join_outer.png
In [89]: result = left.join(right, how="inner")

In [90]: result
Out[90]: 
     A   B   C   D
K0  A0  B0  C0  D0
K2  A2  B2  C2  D2

../_images/merging_join_inner.png

DataFrame.join() takes an optional on argument which may be a column or multiple column names that the passed DataFrame is to be aligned.

In [91]: left = pd.DataFrame(
   ....:     {
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:         "key": ["K0", "K1", "K0", "K1"],
   ....:     }
   ....: )
   ....: 

In [92]: right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])

In [93]: result = left.join(right, on="key")

In [94]: result
Out[94]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1

../_images/merging_join_key_columns.png
In [95]: result = pd.merge(
   ....:     left, right, left_on="key", right_index=True, how="left", sort=False
   ....: )
   ....: 

In [96]: result
Out[96]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1

../_images/merging_merge_key_columns.png

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [97]: left = pd.DataFrame(
   ....:     {
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:         "key1": ["K0", "K0", "K1", "K2"],
   ....:         "key2": ["K0", "K1", "K0", "K1"],
   ....:     }
   ....: )
   ....: 

In [98]: index = pd.MultiIndex.from_tuples(
   ....:     [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
   ....: )
   ....: 

In [99]: right = pd.DataFrame(
   ....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
   ....: )
   ....: 

In [100]: result = left.join(right, on=["key1", "key2"])

In [101]: result
Out[101]: 
    A   B key1 key2    C    D
0  A0  B0   K0   K0   C0   D0
1  A1  B1   K0   K1  NaN  NaN
2  A2  B2   K1   K0   C1   D1
3  A3  B3   K2   K1   C3   D3

../_images/merging_join_multikeys.png

The default for DataFrame.join is to perform a left join which uses only the keys found in the calling DataFrame. Other join types can be specified with how.

In [102]: result = left.join(right, on=["key1", "key2"], how="inner")

In [103]: result
Out[103]: 
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
2  A2  B2   K1   K0  C1  D1
3  A3  B3   K2   K1  C3  D3

../_images/merging_join_multikeys_inner.png

Joining a single Index to a MultiIndex#

You can join a DataFrame with a Index to a DataFrame with a MultiIndex on a level. The name of the Index will match the level name of the MultiIndex.

In [104]: left = pd.DataFrame(
   .....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
   .....:     index=pd.Index(["K0", "K1", "K2"], name="key"),
   .....: )
   .....: 

In [105]: index = pd.MultiIndex.from_tuples(
   .....:     [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
   .....:     names=["key", "Y"],
   .....: )
   .....: 

In [106]: right = pd.DataFrame(
   .....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
   .....:     index=index,
   .....: )
   .....: 

In [107]: result = left.join(right, how="inner")

In [108]: result
Out[108]: 
         A   B   C   D
key Y                 
K0  Y0  A0  B0  C0  D0
K1  Y1  A1  B1  C1  D1
K2  Y2  A2  B2  C2  D2
    Y3  A2  B2  C3  D3

../_images/merging_join_multiindex_inner.png

Joining with two MultiIndex#

The MultiIndex of the input argument must be completely used in the join and is a subset of the indices in the left argument.

In [109]: leftindex = pd.MultiIndex.from_product(
   .....:     [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
   .....: )
   .....: 

In [110]: left = pd.DataFrame({"v1": range(12)}, index=leftindex)

In [111]: left
Out[111]: 
            v1
abc xy num    
a   x  1     0
       2     1
    y  1     2
       2     3
b   x  1     4
       2     5
    y  1     6
       2     7
c   x  1     8
       2     9
    y  1    10
       2    11

In [112]: rightindex = pd.MultiIndex.from_product(
   .....:     [list("abc"), list("xy")], names=["abc", "xy"]
   .....: )
   .....: 

In [113]: right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)

In [114]: right
Out[114]: 
         v2
abc xy     
a   x   100
    y   200
b   x   300
    y   400
c   x   500
    y   600

In [115]: left.join(right, on=["abc", "xy"], how="inner")
Out[115]: 
            v1   v2
abc xy num         
a   x  1     0  100
       2     1  100
    y  1     2  200
       2     3  200
b   x  1     4  300
       2     5  300
    y  1     6  400
       2     7  400
c   x  1     8  500
       2     9  500
    y  1    10  600
       2    11  600
In [116]: leftindex = pd.MultiIndex.from_tuples(
   .....:     [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
   .....: )
   .....: 

In [117]: left = pd.DataFrame(
   .....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
   .....: )
   .....: 

In [118]: rightindex = pd.MultiIndex.from_tuples(
   .....:     [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
   .....: )
   .....: 

In [119]: right = pd.DataFrame(
   .....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
   .....: )
   .....: 

In [120]: result = pd.merge(
   .....:     left.reset_index(), right.reset_index(), on=["key"], how="inner"
   .....: ).set_index(["key", "X", "Y"])
   .....: 

In [121]: result
Out[121]: 
            A   B   C   D
key X  Y                 
K0  X0 Y0  A0  B0  C0  D0
    X1 Y0  A1  B1  C0  D0
K1  X2 Y1  A2  B2  C1  D1

../_images/merging_merge_two_multiindex.png

Merging on a combination of columns and index levels#

Strings passed as the on, left_on, and right_on parameters may refer to either column names or index level names. This enables merging DataFrame instances on a combination of index levels and columns without resetting indexes.

In [122]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")

In [123]: left = pd.DataFrame(
   .....:     {
   .....:         "A": ["A0", "A1", "A2", "A3"],
   .....:         "B": ["B0", "B1", "B2", "B3"],
   .....:         "key2": ["K0", "K1", "K0", "K1"],
   .....:     },
   .....:     index=left_index,
   .....: )
   .....: 

In [124]: right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")

In [125]: right = pd.DataFrame(
   .....:     {
   .....:         "C": ["C0", "C1", "C2", "C3"],
   .....:         "D": ["D0", "D1", "D2", "D3"],
   .....:         "key2": ["K0", "K0", "K0", "K1"],
   .....:     },
   .....:     index=right_index,
   .....: )
   .....: 

In [126]: result = left.merge(right, on=["key1", "key2"])

In [127]: result
Out[127]: 
       A   B key2   C   D
key1                     
K0    A0  B0   K0  C0  D0
K1    A2  B2   K0  C1  D1
K2    A3  B3   K1  C3  D3

../_images/merge_on_index_and_column.png

Note

When DataFrame are joined on a string that matches an index level in both arguments, the index level is preserved as an index level in the resulting DataFrame.

Note

When DataFrame are joined using only some of the levels of a MultiIndex, the extra levels will be dropped from the resulting join. To preserve those levels, use DataFrame.reset_index() on those level names to move those levels to columns prior to the join.

Joining multiple DataFrame#

A list or tuple of :class:`DataFrame` can also be passed to join() to join them together on their indexes.

In [128]: right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])

In [129]: result = left.join([right, right2])

../_images/merging_join_multi_df.png

DataFrame.combine_first()#

DataFrame.combine_first() update missing values from one DataFrame with the non-missing values in another DataFrame in the corresponding location.

In [130]: df1 = pd.DataFrame(
   .....:     [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
   .....: )
   .....: 

In [131]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])

In [132]: result = df1.combine_first(df2)

In [133]: result
Out[133]: 
     0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0

../_images/merging_combine_first.png

merge_ordered()#

merge_ordered() combines order data such as numeric or time series data with optional filling of missing data with fill_method.

In [134]: left = pd.DataFrame(
   .....:     {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
   .....: )
   .....: 

In [135]: right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})

In [136]: pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
Out[136]: 
     k   lv  s   rv
0   K0  1.0  a  NaN
1   K1  1.0  a  1.0
2   K2  1.0  a  2.0
3   K4  1.0  a  3.0
4   K1  2.0  b  1.0
5   K2  2.0  b  2.0
6   K4  2.0  b  3.0
7   K1  3.0  c  1.0
8   K2  3.0  c  2.0
9   K4  3.0  c  3.0
10  K1  NaN  d  1.0
11  K2  4.0  d  2.0
12  K4  4.0  d  3.0

merge_asof()#

merge_asof() is similar to an ordered left-join except that matches are on the nearest key rather than equal keys. For each row in the left DataFrame, the last row in the right DataFrame are selected where the on key is less than the left’s key. Both DataFrame must be sorted by the key.

Optionally an merge_asof() can perform a group-wise merge by matching the by key in addition to the nearest match on the on key.

In [137]: trades = pd.DataFrame(
   .....:     {
   .....:         "time": pd.to_datetime(
   .....:             [
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.038",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.048",
   .....:             ]
   .....:         ),
   .....:         "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
   .....:         "price": [51.95, 51.95, 720.77, 720.92, 98.00],
   .....:         "quantity": [75, 155, 100, 100, 100],
   .....:     },
   .....:     columns=["time", "ticker", "price", "quantity"],
   .....: )
   .....: 

In [138]: quotes = pd.DataFrame(
   .....:     {
   .....:         "time": pd.to_datetime(
   .....:             [
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.030",
   .....:                 "20160525 13:30:00.041",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.049",
   .....:                 "20160525 13:30:00.072",
   .....:                 "20160525 13:30:00.075",
   .....:             ]
   .....:         ),
   .....:         "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
   .....:         "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
   .....:         "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
   .....:     },
   .....:     columns=["time", "ticker", "bid", "ask"],
   .....: )
   .....: 

In [139]: trades
Out[139]: 
                     time ticker   price  quantity
0 2016-05-25 13:30:00.023   MSFT   51.95        75
1 2016-05-25 13:30:00.038   MSFT   51.95       155
2 2016-05-25 13:30:00.048   GOOG  720.77       100
3 2016-05-25 13:30:00.048   GOOG  720.92       100
4 2016-05-25 13:30:00.048   AAPL   98.00       100

In [140]: quotes
Out[140]: 
                     time ticker     bid     ask
0 2016-05-25 13:30:00.023   GOOG  720.50  720.93
1 2016-05-25 13:30:00.023   MSFT   51.95   51.96
2 2016-05-25 13:30:00.030   MSFT   51.97   51.98
3 2016-05-25 13:30:00.041   MSFT   51.99   52.00
4 2016-05-25 13:30:00.048   GOOG  720.50  720.93
5 2016-05-25 13:30:00.049   AAPL   97.99   98.01
6 2016-05-25 13:30:00.072   GOOG  720.50  720.88
7 2016-05-25 13:30:00.075   MSFT   52.01   52.03

In [141]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[141]: 
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

merge_asof() within 2ms between the quote time and the trade time.

In [142]: pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))
Out[142]: 
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155     NaN     NaN
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

merge_asof() within 10ms between the quote time and the trade time and exclude exact matches on time. Note that though we exclude the exact matches (of the quotes), prior quotes do propagate to that point in time.

In [143]: pd.merge_asof(
   .....:     trades,
   .....:     quotes,
   .....:     on="time",
   .....:     by="ticker",
   .....:     tolerance=pd.Timedelta("10ms"),
   .....:     allow_exact_matches=False,
   .....: )
   .....: 
Out[143]: 
                     time ticker   price  quantity    bid    ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75    NaN    NaN
1 2016-05-25 13:30:00.038   MSFT   51.95       155  51.97  51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100    NaN    NaN
3 2016-05-25 13:30:00.048   GOOG  720.92       100    NaN    NaN
4 2016-05-25 13:30:00.048   AAPL   98.00       100    NaN    NaN

compare()#

The Series.compare() and DataFrame.compare() methods allow you to compare two DataFrame or Series, respectively, and summarize their differences.

In [144]: df = pd.DataFrame(
   .....:     {
   .....:         "col1": ["a", "a", "b", "b", "a"],
   .....:         "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
   .....:         "col3": [1.0, 2.0, 3.0, 4.0, 5.0],
   .....:     },
   .....:     columns=["col1", "col2", "col3"],
   .....: )
   .....: 

In [145]: df
Out[145]: 
  col1  col2  col3
0    a   1.0   1.0
1    a   2.0   2.0
2    b   3.0   3.0
3    b   NaN   4.0
4    a   5.0   5.0

In [146]: df2 = df.copy()

In [147]: df2.loc[0, "col1"] = "c"

In [148]: df2.loc[2, "col3"] = 4.0

In [149]: df2
Out[149]: 
  col1  col2  col3
0    c   1.0   1.0
1    a   2.0   2.0
2    b   3.0   4.0
3    b   NaN   4.0
4    a   5.0   5.0

In [150]: df.compare(df2)
Out[150]: 
  col1       col3      
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

By default, if two corresponding values are equal, they will be shown as NaN. Furthermore, if all values in an entire row / column are equal, that row / column will be omitted from the result. The remaining differences will be aligned on columns.

Stack the differences on rows.

In [151]: df.compare(df2, align_axis=0)
Out[151]: 
        col1  col3
0 self     a   NaN
  other    c   NaN
2 self   NaN   3.0
  other  NaN   4.0

Keep all original rows and columns with keep_shape=True

In [152]: df.compare(df2, keep_shape=True)
Out[152]: 
  col1       col2       col3      
  self other self other self other
0    a     c  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN  NaN   NaN
2  NaN   NaN  NaN   NaN  3.0   4.0
3  NaN   NaN  NaN   NaN  NaN   NaN
4  NaN   NaN  NaN   NaN  NaN   NaN

Keep all the original values even if they are equal.

In [153]: df.compare(df2, keep_shape=True, keep_equal=True)
Out[153]: 
  col1       col2       col3      
  self other self other self other
0    a     c  1.0   1.0  1.0   1.0
1    a     a  2.0   2.0  2.0   2.0
2    b     b  3.0   3.0  3.0   4.0
3    b     b  NaN   NaN  4.0   4.0
4    a     a  5.0   5.0  5.0   5.0