Version 0.19.0 (October 2, 2016)#
This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
merge_asof()
for asof-style time-series joining, see here.rolling()
is now time-series aware, see hereread_csv()
now supports parsingCategorical
data, see hereA function
union_categorical()
has been added for combining categoricals, see herePeriodIndex
now has its ownperiod
dtype, and changed to be more consistent with otherIndex
classes. See hereSparse data structures gained enhanced support of
int
andbool
dtypes, see hereComparison operations with
Series
no longer ignores the index, see here for an overview of the API changes.Introduction of a pandas development API for utility functions, see here.
Deprecation of
Panel4D
andPanelND
. We recommend to represent these types of n-dimensional data with the xarray package.Removal of the previously deprecated modules
pandas.io.data
,pandas.io.wb
,pandas.tools.rplot
.
Warning
pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.
What’s new in v0.19.0
New features#
Function merge_asof
for asof-style time-series joining#
A long-time requested feature has been added through the merge_asof()
function, to
support asof style joining of time-series (GH 1870, GH 13695, GH 13709, GH 13902). Full documentation is
here.
The merge_asof()
performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
In [1]: left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})
In [2]: right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})
In [3]: left
Out[3]:
a left_val
0 1 a
1 5 b
2 10 c
[3 rows x 2 columns]
In [4]: right
Out[4]:
a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7
[5 rows x 2 columns]
We typically want to match exactly when possible, and use the most recent value otherwise.
In [5]: pd.merge_asof(left, right, on="a")
Out[5]:
a left_val right_val
0 1 a 1
1 5 b 3
2 10 c 7
[3 rows x 3 columns]
We can also match rows ONLY with prior data, and not an exact match.
In [6]: pd.merge_asof(left, right, on="a", allow_exact_matches=False)
Out[6]:
a left_val right_val
0 1 a NaN
1 5 b 3.0
2 10 c 7.0
[3 rows x 3 columns]
In a typical time-series example, we have trades
and quotes
and we want to asof-join
them.
This also illustrates using the by
parameter to group data before merging.
In [7]: trades = pd.DataFrame(
...: {
...: "time": pd.to_datetime(
...: [
...: "20160525 13:30:00.023",
...: "20160525 13:30:00.038",
...: "20160525 13:30:00.048",
...: "20160525 13:30:00.048",
...: "20160525 13:30:00.048",
...: ]
...: ),
...: "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
...: "price": [51.95, 51.95, 720.77, 720.92, 98.00],
...: "quantity": [75, 155, 100, 100, 100],
...: },
...: columns=["time", "ticker", "price", "quantity"],
...: )
...:
In [8]: quotes = pd.DataFrame(
...: {
...: "time": pd.to_datetime(
...: [
...: "20160525 13:30:00.023",
...: "20160525 13:30:00.023",
...: "20160525 13:30:00.030",
...: "20160525 13:30:00.041",
...: "20160525 13:30:00.048",
...: "20160525 13:30:00.049",
...: "20160525 13:30:00.072",
...: "20160525 13:30:00.075",
...: ]
...: ),
...: "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
...: "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
...: "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
...: },
...: columns=["time", "ticker", "bid", "ask"],
...: )
...:
In [9]: trades
Out[9]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
[5 rows x 4 columns]
In [10]: quotes
Out[10]:
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
[8 rows x 4 columns]
An asof merge joins on the on
, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the by
field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
In [11]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[11]:
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
[5 rows x 6 columns]
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (trades
in this case), with the fields of the quotes
merged.
Method .rolling()
is now time-series aware#
.rolling()
objects are now time-series aware and can accept a time-series offset (or convertible) for the window
argument (GH 13327, GH 12995).
See the full documentation here.
In [12]: dft = pd.DataFrame(
....: {"B": [0, 1, 2, np.nan, 4]},
....: index=pd.date_range("20130101 09:00:00", periods=5, freq="s"),
....: )
....:
In [13]: dft
Out[13]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0
[5 rows x 1 columns]
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [14]: dft.rolling(2).sum()
Out[14]:
B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN
[5 rows x 1 columns]
In [15]: dft.rolling(2, min_periods=1).sum()
Out[15]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
[5 rows x 1 columns]
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [16]: dft.rolling("2s").sum()
Out[16]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
[5 rows x 1 columns]
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [17]: dft = pd.DataFrame(
....: {"B": [0, 1, 2, np.nan, 4]},
....: index=pd.Index(
....: [
....: pd.Timestamp("20130101 09:00:00"),
....: pd.Timestamp("20130101 09:00:02"),
....: pd.Timestamp("20130101 09:00:03"),
....: pd.Timestamp("20130101 09:00:05"),
....: pd.Timestamp("20130101 09:00:06"),
....: ],
....: name="foo",
....: ),
....: )
....:
In [18]: dft
Out[18]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
[5 rows x 1 columns]
In [19]: dft.rolling(2).sum()
Out[19]:
B
foo
2013-01-01 09:00:00 NaN
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 NaN
[5 rows x 1 columns]
Using the time-specification generates variable windows for this sparse data.
In [20]: dft.rolling("2s").sum()
Out[20]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
[5 rows x 1 columns]
Furthermore, we now allow an optional on
parameter to specify a column (rather than the
default of the index) in a DataFrame.
In [21]: dft = dft.reset_index()
In [22]: dft
Out[22]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
[5 rows x 2 columns]
In [23]: dft.rolling("2s", on="foo").sum()
Out[23]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
[5 rows x 2 columns]
Method read_csv
has improved support for duplicate column names#
Duplicate column names are now supported in read_csv()
whether
they are in the file or passed in as the names
parameter (GH 7160, GH 9424)
In [24]: data = "0,1,2\n3,4,5"
In [25]: names = ["a", "b", "a"]
Previous behavior:
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
a b a
0 2 1 2
1 5 4 5
The first a
column contained the same data as the second a
column, when it should have
contained the values [0, 3]
.
New behavior:
In [26]: pd.read_csv(StringIO(data), names=names)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[26], line 1
----> 1 pd.read_csv(StringIO(data), names=names)
File ~/work/pandas/pandas/pandas/io/parsers/readers.py:840, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, skip_blank_lines, parse_dates, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, low_memory, memory_map, float_precision, storage_options, dtype_backend)
828 kwds_defaults = _refine_defaults_read(
829 dialect,
830 delimiter,
(...)
836 dtype_backend=dtype_backend,
837 )
838 kwds.update(kwds_defaults)
--> 840 return _read(filepath_or_buffer, kwds)
File ~/work/pandas/pandas/pandas/io/parsers/readers.py:701, in _read(filepath_or_buffer, kwds)
698 nrows = kwds.get("nrows", None)
700 # Check for duplicates in names.
--> 701 _validate_names(kwds.get("names", None))
703 # Create the parser.
704 parser = TextFileReader(filepath_or_buffer, **kwds)
File ~/work/pandas/pandas/pandas/io/parsers/readers.py:655, in _validate_names(names)
653 if names is not None:
654 if len(names) != len(set(names)):
--> 655 raise ValueError("Duplicate names are not allowed.")
656 if not (
657 is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
658 ):
659 raise ValueError("Names should be an ordered collection.")
ValueError: Duplicate names are not allowed.
Method read_csv
supports parsing Categorical
directly#
The read_csv()
function now supports parsing a Categorical
column when
specified as a dtype (GH 10153). Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to Categorical
after parsing. See the io docs here.
In [27]: data = """
....: col1,col2,col3
....: a,b,1
....: a,b,2
....: c,d,3
....: """
....:
In [28]: pd.read_csv(StringIO(data))
Out[28]:
col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
[3 rows x 3 columns]
In [29]: pd.read_csv(StringIO(data)).dtypes
Out[29]:
col1 object
col2 object
col3 int64
Length: 3, dtype: object
In [30]: pd.read_csv(StringIO(data), dtype="category").dtypes
Out[30]:
col1 category
col2 category
col3 category
Length: 3, dtype: object
Individual columns can be parsed as a Categorical
using a dict specification
In [31]: pd.read_csv(StringIO(data), dtype={"col1": "category"}).dtypes
Out[31]:
col1 category
col2 object
col3 int64
Length: 3, dtype: object
Note
The resulting categories will always be parsed as strings (object dtype).
If the categories are numeric they can be converted using the
to_numeric()
function, or as appropriate, another converter
such as to_datetime()
.
In [32]: df = pd.read_csv(StringIO(data), dtype="category")
In [33]: df.dtypes
Out[33]:
col1 category
col2 category
col3 category
Length: 3, dtype: object
In [34]: df["col3"]
Out[34]:
0 1
1 2
2 3
Name: col3, Length: 3, dtype: category
Categories (3, object): ['1', '2', '3']
In [35]: new_categories = pd.to_numeric(df["col3"].cat.categories)
In [36]: df["col3"] = df["col3"].cat.rename_categories(new_categories)
In [37]: df["col3"]
Out[37]:
0 1
1 2
2 3
Name: col3, Length: 3, dtype: category
Categories (3, int64): [1, 2, 3]
Categorical concatenation#
A function
union_categoricals()
has been added for combining categoricals, see Unioning Categoricals (GH 13361, GH 13763, GH 13846, GH 14173)In [38]: from pandas.api.types import union_categoricals In [39]: a = pd.Categorical(["b", "c"]) In [40]: b = pd.Categorical(["a", "b"]) In [41]: union_categoricals([a, b]) Out[41]: ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a']
concat
andappend
now can concatcategory
dtypes with differentcategories
asobject
dtype (GH 13524)In [42]: s1 = pd.Series(["a", "b"], dtype="category") In [43]: s2 = pd.Series(["b", "c"], dtype="category")
Previous behavior:
In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat
New behavior:
In [44]: pd.concat([s1, s2])
Out[44]:
0 a
1 b
0 b
1 c
Length: 4, dtype: object
Semi-month offsets#
pandas has gained new frequency offsets, SemiMonthEnd
(‘SM’) and SemiMonthBegin
(‘SMS’).
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(GH 1543)
In [45]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
In [46]: pd.Timestamp("2016-01-01") + SemiMonthEnd()
Out[46]: Timestamp('2016-01-15 00:00:00')
In [47]: pd.date_range("2015-01-01", freq="SM", periods=4)
Out[47]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')
SemiMonthBegin:
In [46]: pd.Timestamp("2016-01-01") + SemiMonthBegin()
Out[46]: Timestamp('2016-01-15 00:00:00')
In [47]: pd.date_range("2015-01-01", freq="SMS", periods=4)
Out[47]: DatetimeIndex(['2015-01-01', '2015-01-15', '2015-02-01', '2015-02-15'], dtype='datetime64[ns]', freq='SMS-15')
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
In [50]: pd.date_range("2015-01-01", freq="SMS-16", periods=4)
Out[50]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16')
In [51]: pd.date_range("2015-01-01", freq="SM-14", periods=4)
Out[51]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')
New Index methods#
The following methods and options are added to Index
, to be more consistent with the Series
and DataFrame
API.
Index
now supports the .where()
function for same shape indexing (GH 13170)
In [48]: idx = pd.Index(["a", "b", "c"])
In [49]: idx.where([True, False, True])
Out[49]: Index(['a', None, 'c'], dtype='object')
Index
now supports .dropna()
to exclude missing values (GH 6194)
In [50]: idx = pd.Index([1, 2, np.nan, 4])
In [51]: idx.dropna()
Out[51]: Index([1.0, 2.0, 4.0], dtype='float64')
For MultiIndex
, values are dropped if any level is missing by default. Specifying
how='all'
only drops values where all levels are missing.
In [52]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4], [1, 2, np.nan, np.nan]])
In [53]: midx
Out[53]:
MultiIndex([(1.0, 1.0),
(2.0, 2.0),
(nan, nan),
(4.0, nan)],
)
In [54]: midx.dropna()
Out[54]:
MultiIndex([(1, 1),
(2, 2)],
)
In [55]: midx.dropna(how="all")
Out[55]:
MultiIndex([(1, 1.0),
(2, 2.0),
(4, nan)],
)
Index
now supports .str.extractall()
which returns a DataFrame
, see the docs here (GH 10008, GH 13156)
In [56]: idx = pd.Index(["a1a2", "b1", "c1"])
In [57]: idx.str.extractall(r"[ab](?P<digit>\d)")
Out[57]:
digit
match
0 0 1
1 2
1 0 1
[3 rows x 1 columns]
Index.astype()
now accepts an optional boolean argument copy
, which allows optional copying if the requirements on dtype are satisfied (GH 13209)
Google BigQuery enhancements#
The
read_gbq()
method has gained thedialect
argument to allow users to specify whether to use BigQuery’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH 13615).The
to_gbq()
method now allows the DataFrame column order to differ from the destination table schema (GH 11359).
Fine-grained NumPy errstate#
Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas
was imported. pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaN
s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the numpy.errstate
context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas code base. (GH 13109, GH 13145)
After upgrading pandas, you may see new RuntimeWarnings
being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use numpy.errstate around the source of the RuntimeWarning
to control how these conditions are handled.
Method get_dummies
now returns integer dtypes#
The pd.get_dummies
function now returns dummy-encoded columns as small integers, rather than floats (GH 8725). This should provide an improved memory footprint.
Previous behavior:
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
a float64
b float64
c float64
dtype: object
New behavior:
In [58]: pd.get_dummies(["a", "b", "a", "c"]).dtypes
Out[58]:
a bool
b bool
c bool
Length: 3, dtype: object
Downcast values to smallest possible dtype in to_numeric
#
pd.to_numeric()
now accepts a downcast
parameter, which will downcast the data if possible to smallest specified numerical dtype (GH 13352)
In [59]: s = ["1", 2, 3]
In [60]: pd.to_numeric(s, downcast="unsigned")
Out[60]: array([1, 2, 3], dtype=uint8)
In [61]: pd.to_numeric(s, downcast="integer")
Out[61]: array([1, 2, 3], dtype=int8)
pandas development API#
As part of making pandas API more uniform and accessible in the future, we have created a standard
sub-package of pandas, pandas.api
to hold public API’s. We are starting by exposing type
introspection functions in pandas.api.types
. More sub-packages and officially sanctioned API’s
will be published in future versions of pandas (GH 13147, GH 13634)
The following are now part of this API:
In [62]: import pprint
In [63]: from pandas.api import types
In [64]: funcs = [f for f in dir(types) if not f.startswith("_")]
In [65]: pprint.pprint(funcs)
['CategoricalDtype',
'DatetimeTZDtype',
'IntervalDtype',
'PeriodDtype',
'infer_dtype',
'is_any_real_numeric_dtype',
'is_array_like',
'is_bool',
'is_bool_dtype',
'is_categorical_dtype',
'is_complex',
'is_complex_dtype',
'is_datetime64_any_dtype',
'is_datetime64_dtype',
'is_datetime64_ns_dtype',
'is_datetime64tz_dtype',
'is_dict_like',
'is_dtype_equal',
'is_extension_array_dtype',
'is_file_like',
'is_float',
'is_float_dtype',
'is_hashable',
'is_int64_dtype',
'is_integer',
'is_integer_dtype',
'is_interval_dtype',
'is_iterator',
'is_list_like',
'is_named_tuple',
'is_number',
'is_numeric_dtype',
'is_object_dtype',
'is_period_dtype',
'is_re',
'is_re_compilable',
'is_scalar',
'is_signed_integer_dtype',
'is_sparse',
'is_string_dtype',
'is_timedelta64_dtype',
'is_timedelta64_ns_dtype',
'is_unsigned_integer_dtype',
'pandas_dtype',
'union_categoricals']
Note
Calling these functions from the internal module pandas.core.common
will now show a DeprecationWarning
(GH 13990)
Other enhancements#
Timestamp
can now accept positional and keyword parameters similar todatetime.datetime()
(GH 10758, GH 11630)In [66]: pd.Timestamp(2012, 1, 1) Out[66]: Timestamp('2012-01-01 00:00:00') In [67]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30) Out[67]: Timestamp('2012-01-01 08:30:00')
The
.resample()
function now accepts aon=
orlevel=
parameter for resampling on a datetimelike column orMultiIndex
level (GH 13500)In [68]: df = pd.DataFrame( ....: {"date": pd.date_range("2015-01-01", freq="W", periods=5), "a": np.arange(5)}, ....: index=pd.MultiIndex.from_arrays( ....: [[1, 2, 3, 4, 5], pd.date_range("2015-01-01", freq="W", periods=5)], ....: names=["v", "d"], ....: ), ....: ) ....: In [69]: df Out[69]: date a v d 1 2015-01-04 2015-01-04 0 2 2015-01-11 2015-01-11 1 3 2015-01-18 2015-01-18 2 4 2015-01-25 2015-01-25 3 5 2015-02-01 2015-02-01 4 [5 rows x 2 columns]
In [74]: df.resample("M", on="date")[["a"]].sum() Out[74]: a date 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns] In [75]: df.resample("M", level="d")[["a"]].sum() Out[75]: a d 2015-01-31 6 2015-02-28 4 [2 rows x 1 columns]
The
.get_credentials()
method ofGbqConnector
can now first try to fetch the application default credentials. See the docs for more details (GH 13577).The
.tz_localize()
method ofDatetimeIndex
andTimestamp
has gained theerrors
keyword, so you can potentially coerce nonexistent timestamps toNaT
. The default behavior remains to raising aNonExistentTimeError
(GH 13057).to_hdf/read_hdf()
now accept path objects (e.g.pathlib.Path
,py.path.local
) for the file path (GH 11773)The
pd.read_csv()
withengine='python'
has gained support for thedecimal
(GH 12933),na_filter
(GH 13321) and thememory_map
option (GH 13381).Consistent with the Python API,
pd.read_csv()
will now interpret+inf
as positive infinity (GH 13274)The
pd.read_html()
has gained support for thena_values
,converters
,keep_default_na
options (GH 13461)Categorical.astype()
now accepts an optional boolean argumentcopy
, effective when dtype is categorical (GH 13209)DataFrame
has gained the.asof()
method to return the last non-NaN values according to the selected subset (GH 13358)The
DataFrame
constructor will now respect key ordering if a list ofOrderedDict
objects are passed in (GH 13304)pd.read_html()
has gained support for thedecimal
option (GH 12907)Series
has gained the properties.is_monotonic
,.is_monotonic_increasing
,.is_monotonic_decreasing
, similar toIndex
(GH 13336)DataFrame.to_sql()
now allows a single value as the SQL type for all columns (GH 11886).Series.append
now supports theignore_index
option (GH 13677).to_stata()
andStataWriter
can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH 13535, GH 13536).to_stata()
andStataWriter
will automatically convertdatetime64[ns]
columns to Stata format%tc
, rather than raising aValueError
(GH 12259)read_stata()
andStataReader
raise with a more explicit error message when reading Stata files with repeated value labels whenconvert_categoricals=True
(GH 13923)DataFrame.style
will now render sparsified MultiIndexes (GH 11655)DataFrame.style
will now show column level names (e.g.DataFrame.columns.names
) (GH 13775)DataFrame
has gained support to re-order the columns based on the values in a row usingdf.sort_values(by='...', axis=1)
(GH 10806)In [70]: df = pd.DataFrame({"A": [2, 7], "B": [3, 5], "C": [4, 8]}, index=["row1", "row2"]) In [71]: df Out[71]: A B C row1 2 3 4 row2 7 5 8 [2 rows x 3 columns] In [72]: df.sort_values(by="row2", axis=1) Out[72]: B A C row1 3 2 4 row2 5 7 8 [2 rows x 3 columns]
Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH 13746)
to_html()
now has aborder
argument to control the value in the opening<table>
tag. The default is the value of thehtml.border
option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH 11563).Raise
ImportError
in the sql functions whensqlalchemy
is not installed and a connection string is used (GH 11920).Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH 13333)
Timestamp
,Period
,DatetimeIndex
,PeriodIndex
and.dt
accessor have gained a.is_leap_year
property to check whether the date belongs to a leap year. (GH 13727)astype()
will now accept a dict of column name to data types mapping as thedtype
argument. (GH 12086)The
pd.read_json
andDataFrame.to_json
has gained support for reading and writing json lines withlines
option see Line delimited json (GH 9180)read_excel()
now supports the true_values and false_values keyword arguments (GH 13347)groupby()
will now accept a scalar and a single-element list for specifyinglevel
on a non-MultiIndex
grouper. (GH 13907)Non-convertible dates in an excel date column will be returned without conversion and the column will be
object
dtype, rather than raising an exception (GH 10001).pd.Timedelta(None)
is now accepted and will returnNaT
, mirroringpd.Timestamp
(GH 13687)pd.read_stata()
can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH 11526)Series
andIndex
now supportdivmod
which will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH 14208).
API changes#
Series.tolist()
will now return Python types#
Series.tolist()
will now return Python types in the output, mimicking NumPy .tolist()
behavior (GH 10904)
In [73]: s = pd.Series([1, 2, 3])
Previous behavior:
In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>
New behavior:
In [74]: type(s.tolist()[0])
Out[74]: int
Series
operators for different indexes#
Following Series
operators have been changed to make all operators consistent,
including DataFrame
(GH 1134, GH 4581, GH 13538)
Series
comparison operators now raiseValueError
whenindex
are different.Series
logical operators align bothindex
of left and right hand side.
Warning
Until 0.18.1, comparing Series
with the same length, would succeed even if
the .index
are different (the result ignores .index
). As of 0.19.0, this will raises ValueError
to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like .eq
.
As a result, Series
and DataFrame
operators behave as below:
Arithmetic operators#
Arithmetic operators align both index
(no changes).
In [75]: s1 = pd.Series([1, 2, 3], index=list("ABC"))
In [76]: s2 = pd.Series([2, 2, 2], index=list("ABD"))
In [77]: s1 + s2
Out[77]:
A 3.0
B 4.0
C NaN
D NaN
Length: 4, dtype: float64
In [78]: df1 = pd.DataFrame([1, 2, 3], index=list("ABC"))
In [79]: df2 = pd.DataFrame([2, 2, 2], index=list("ABD"))
In [80]: df1 + df2
Out[80]:
0
A 3.0
B 4.0
C NaN
D NaN
[4 rows x 1 columns]
Comparison operators#
Comparison operators raise ValueError
when .index
are different.
Previous behavior (Series
):
Series
compared values ignoring the .index
as long as both had the same length:
In [1]: s1 == s2
Out[1]:
A False
B True
C False
dtype: bool
New behavior (Series
):
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
Note
To achieve the same result as previous versions (compare values based on locations ignoring .index
), compare both .values
.
In [81]: s1.values == s2.values
Out[81]: array([False, True, False])
If you want to compare Series
aligning its .index
, see flexible comparison methods section below:
In [82]: s1.eq(s2)
Out[82]:
A False
B True
C False
D False
Length: 4, dtype: bool
Current behavior (DataFrame
, no change):
In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects
Logical operators#
Logical operators align both .index
of left and right hand side.
Previous behavior (Series
), only left hand side index
was kept:
In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A True
B False
C False
dtype: bool
New behavior (Series
):
In [83]: s1 = pd.Series([True, False, True], index=list("ABC"))
In [84]: s2 = pd.Series([True, True, True], index=list("ABD"))
In [85]: s1 & s2
Out[85]:
A True
B False
C False
D False
Length: 4, dtype: bool
Note
Series
logical operators fill a NaN
result with False
.
Note
To achieve the same result as previous versions (compare values based on only left hand side index), you can use reindex_like
:
In [86]: s1 & s2.reindex_like(s1)
Out[86]:
A True
B False
C False
Length: 3, dtype: bool
Current behavior (DataFrame
, no change):
In [87]: df1 = pd.DataFrame([True, False, True], index=list("ABC"))
In [88]: df2 = pd.DataFrame([True, True, True], index=list("ABD"))
In [89]: df1 & df2
Out[89]:
0
A True
B False
C False
D False
[4 rows x 1 columns]
Flexible comparison methods#
Series
flexible comparison methods like eq
, ne
, le
, lt
, ge
and gt
now align both index
. Use these operators if you want to compare two Series
which has the different index
.
In [90]: s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
In [91]: s2 = pd.Series([2, 2, 2], index=["b", "c", "d"])
In [92]: s1.eq(s2)
Out[92]:
a False
b True
c False
d False
Length: 4, dtype: bool
In [93]: s1.ge(s2)
Out[93]:
a False
b True
c True
d False
Length: 4, dtype: bool
Previously, this worked the same as comparison operators (see above).
Series
type promotion on assignment#
A Series
will now correctly promote its dtype for assignment with incompat values to the current dtype (GH 13234)
In [94]: s = pd.Series()
Previous behavior:
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
New behavior:
In [95]: s["a"] = pd.Timestamp("2016-01-01")
In [96]: s["b"] = 3.0
In [97]: s
Out[97]:
a 2016-01-01 00:00:00
b 3.0
Length: 2, dtype: object
In [98]: s.dtype
Out[98]: dtype('O')
Function .to_datetime()
changes#
Previously if .to_datetime()
encountered mixed integers/floats and strings, but no datetimes with errors='coerce'
it would convert all to NaT
.
Previous behavior:
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
Current behavior:
This will now convert integers/floats with the default unit of ns
.
In [99]: pd.to_datetime([1, "foo"], errors="coerce")
Out[99]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype='datetime64[ns]', freq=None)
Bug fixes related to .to_datetime()
:
Bug in
pd.to_datetime()
when passing integers or floats, and nounit
anderrors='coerce'
(GH 13180).Bug in
pd.to_datetime()
when passing invalid data types (e.g. bool); will now respect theerrors
keyword (GH 13176)Bug in
pd.to_datetime()
which overflowed onint8
, andint16
dtypes (GH 13451)Bug in
pd.to_datetime()
raiseAttributeError
withNaN
and the other string is not valid whenerrors='ignore'
(GH 12424)Bug in
pd.to_datetime()
did not cast floats correctly whenunit
was specified, resulting in truncated datetime (GH 13834)
Merging changes#
Merging will now preserve the dtype of the join keys (GH 8596)
In [100]: df1 = pd.DataFrame({"key": [1], "v1": [10]})
In [101]: df1
Out[101]:
key v1
0 1 10
[1 rows x 2 columns]
In [102]: df2 = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
In [103]: df2
Out[103]:
key v1
0 1 20
1 2 30
[2 rows x 2 columns]
Previous behavior:
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object
New behavior:
We are able to preserve the join keys
In [104]: pd.merge(df1, df2, how="outer")
Out[104]:
key v1
0 1 10
1 1 20
2 2 30
[3 rows x 2 columns]
In [105]: pd.merge(df1, df2, how="outer").dtypes
Out[105]:
key int64
v1 int64
Length: 2, dtype: object
Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.
In [106]: pd.merge(df1, df2, how="outer", on="key")
Out[106]:
key v1_x v1_y
0 1 10.0 20
1 2 NaN 30
[2 rows x 3 columns]
In [107]: pd.merge(df1, df2, how="outer", on="key").dtypes
Out[107]:
key int64
v1_x float64
v1_y int64
Length: 3, dtype: object
Method .describe()
changes#
Percentile identifiers in the index of a .describe()
output will now be rounded to the least precision that keeps them distinct (GH 13104)
In [108]: s = pd.Series([0, 1, 2, 3, 4])
In [109]: df = pd.DataFrame([0, 1, 2, 3, 4])
Previous behavior:
The percentiles were rounded to at most one decimal place, which could raise ValueError
for a data frame if the percentiles were duplicated.
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
New behavior:
In [110]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[110]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
Length: 12, dtype: float64
In [111]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[111]:
0
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.01% 0.000400
0.05% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
99.95% 3.998000
99.99% 3.999600
max 4.000000
[12 rows x 1 columns]
Furthermore:
Passing duplicated
percentiles
will now raise aValueError
.Bug in
.describe()
on a DataFrame with a mixed-dtype column index, which would previously raise aTypeError
(GH 13288)
Period
changes#
The PeriodIndex
now has period
dtype#
PeriodIndex
now has its own period
dtype. The period
dtype is a
pandas extension dtype like category
or the timezone aware dtype (datetime64[ns, tz]
) (GH 13941).
As a consequence of this change, PeriodIndex
no longer has an integer dtype:
Previous behavior:
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')
In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
In [4]: pi.dtype
Out[4]: dtype('int64')
New behavior:
In [112]: pi = pd.PeriodIndex(["2016-08-01"], freq="D")
In [113]: pi
Out[113]: PeriodIndex(['2016-08-01'], dtype='period[D]')
In [114]: pd.api.types.is_integer_dtype(pi)
Out[114]: False
In [115]: pd.api.types.is_period_dtype(pi)
Out[115]: True
In [116]: pi.dtype
Out[116]: period[D]
In [117]: type(pi.dtype)
Out[117]: pandas.core.dtypes.dtypes.PeriodDtype
Period('NaT')
now returns pd.NaT
#
Previously, Period
has its own Period('NaT')
representation different from pd.NaT
. Now Period('NaT')
has been changed to return pd.NaT
. (GH 12759, GH 13582)
Previous behavior:
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
New behavior:
These result in pd.NaT
without providing freq
option.
In [118]: pd.Period("NaT")
Out[118]: NaT
In [119]: pd.Period(None)
Out[119]: NaT
To be compatible with Period
addition and subtraction, pd.NaT
now supports addition and subtraction with int
. Previously it raised ValueError
.
Previous behavior:
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
New behavior:
In [120]: pd.NaT + 1
Out[120]: NaT
In [121]: pd.NaT - 1
Out[121]: NaT
PeriodIndex.values
now returns array of Period
object#
.values
is changed to return an array of Period
objects, rather than an array
of integers (GH 13988).
Previous behavior:
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
Out[7]: array([492, 493])
New behavior:
In [122]: pi = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
In [123]: pi.values
Out[123]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)
Index +
/ -
no longer used for set operations#
Addition and subtraction of the base Index type and of DatetimeIndex
(not the numeric index types)
previously performed set operations (set union and difference). This
behavior was already deprecated since 0.15.0 (in favor using the specific
.union()
and .difference()
methods), and is now disabled. When
possible, +
and -
are now used for element-wise operations, for
example for concatenating strings or subtracting datetimes
(GH 8227, GH 14127).
Previous behavior:
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')
New behavior: the same operation will now perform element-wise addition:
In [124]: pd.Index(["a", "b"]) + pd.Index(["a", "c"])
Out[124]: Index(['aa', 'bc'], dtype='object')
Note that numeric Index objects already performed element-wise operations.
For example, the behavior of adding two integer Indexes is unchanged.
The base Index
is now made consistent with this behavior.
In [125]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[125]: Index([3, 5, 7], dtype='int64')
Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:
Previous behavior:
In [1]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02'])
...: - pd.DatetimeIndex(['2016-01-02', '2016-01-03']))
FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
New behavior:
In [126]: (
.....: pd.DatetimeIndex(["2016-01-01", "2016-01-02"])
.....: - pd.DatetimeIndex(["2016-01-02", "2016-01-03"])
.....: )
.....:
Out[126]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[s]', freq=None)
Index.difference
and .symmetric_difference
changes#
Index.difference
and Index.symmetric_difference
will now, more consistently, treat NaN
values as any other values. (GH 13514)
In [127]: idx1 = pd.Index([1, 2, 3, np.nan])
In [128]: idx2 = pd.Index([0, 1, np.nan])
Previous behavior:
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
New behavior:
In [129]: idx1.difference(idx2)
Out[129]: Index([2.0, 3.0], dtype='float64')
In [130]: idx1.symmetric_difference(idx2)
Out[130]: Index([0.0, 2.0, 3.0], dtype='float64')
Index.unique
consistently returns Index
#
Index.unique()
now returns unique values as an
Index
of the appropriate dtype
. (GH 13395).
Previously, most Index
classes returned np.ndarray
, and DatetimeIndex
,
TimedeltaIndex
and PeriodIndex
returned Index
to keep metadata like timezone.
Previous behavior:
In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02',
...: '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)
New behavior:
In [131]: pd.Index([1, 2, 3]).unique()
Out[131]: Index([1, 2, 3], dtype='int64')
In [132]: pd.DatetimeIndex(
.....: ["2011-01-01", "2011-01-02", "2011-01-03"], tz="Asia/Tokyo"
.....: ).unique()
.....:
Out[132]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
'2011-01-03 00:00:00+09:00'],
dtype='datetime64[s, Asia/Tokyo]', freq=None)
MultiIndex
constructors, groupby
and set_index
preserve categorical dtypes#
MultiIndex.from_arrays
and MultiIndex.from_product
will now preserve categorical dtype
in MultiIndex
levels (GH 13743, GH 13854).
In [133]: cat = pd.Categorical(["a", "b"], categories=list("bac"))
In [134]: lvl1 = ["foo", "bar"]
In [135]: midx = pd.MultiIndex.from_arrays([cat, lvl1])
In [136]: midx
Out[136]:
MultiIndex([('a', 'foo'),
('b', 'bar')],
)
Previous behavior:
In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')
In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')
New behavior: the single level is now a CategoricalIndex
:
In [137]: midx.levels[0]
Out[137]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
In [138]: midx.get_level_values(0)
Out[138]: CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
An analogous change has been made to MultiIndex.from_product
.
As a consequence, groupby
and set_index
also preserve categorical dtypes in indexes
In [139]: df = pd.DataFrame({"A": [0, 1], "B": [10, 11], "C": cat})
In [140]: df_grouped = df.groupby(by=["A", "C"], observed=False).first()
In [141]: df_set_idx = df.set_index(["A", "C"])
Previous behavior:
In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
A int64
C object
B float64
dtype: object
In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object
New behavior:
In [142]: df_grouped.index.levels[1]
Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category', name='C')
In [143]: df_grouped.reset_index().dtypes
Out[143]:
A int64
C category
B float64
Length: 3, dtype: object
In [144]: df_set_idx.index.levels[1]
Out[144]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category', name='C')
In [145]: df_set_idx.reset_index().dtypes
Out[145]:
A int64
C category
B int64
Length: 3, dtype: object
Function read_csv
will progressively enumerate chunks#
When read_csv()
is called with chunksize=n
and without specifying an index,
each chunk used to have an independently generated index from 0
to n-1
.
They are now given instead a progressive index, starting from 0
for the first chunk,
from n
for the second, and so on, so that, when concatenated, they are identical to
the result of calling read_csv()
without the chunksize=
argument
(GH 12185).
In [146]: data = "A,B\n0,1\n2,3\n4,5\n6,7"
Previous behavior:
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
A B
0 0 1
1 2 3
0 4 5
1 6 7
New behavior:
In [147]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[147]:
A B
0 0 1
1 2 3
2 4 5
3 6 7
[4 rows x 2 columns]
Sparse changes#
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
Types int64
and bool
support enhancements#
Sparse data structures now gained enhanced support of int64
and bool
dtype
(GH 667, GH 13849).
Previously, sparse data were float64
dtype by default, even if all inputs were of int
or bool
dtype. You had to specify dtype
explicitly to create sparse data with int64
dtype. Also, fill_value
had to be specified explicitly because the default was np.nan
which doesn’t appear in int64
or bool
data.
In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
# specifying int64 dtype, but all values are stored in sp_values because
# fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value
defaults (0
for int64
dtype, False
for bool
dtype).
In [148]: pd.arrays.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[148]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
In [149]: pd.arrays.SparseArray([True, False, False, False])
Out[149]:
[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)
See the docs for more details.
Operators now preserve dtypes#
Sparse data structure now can preserve
dtype
after arithmetic ops (GH 13848)
s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
s.dtype
s + 1
Sparse data structure now support
astype
to convert internaldtype
(GH 13900)
s = pd.SparseSeries([1.0, 0.0, 2.0, 0.0], fill_value=0)
s
s.astype(np.int64)
astype
fails if data contains values which cannot be converted to specified dtype
.
Note that the limitation is applied to fill_value
which default is np.nan
.
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype
Other sparse fixes#
Subclassed
SparseDataFrame
andSparseSeries
now preserve class types when slicing or transposing. (GH 13787)SparseArray
withbool
dtype now supports logical (bool) operators (GH 14000)Bug in
SparseSeries
withMultiIndex
[]
indexing may raiseIndexError
(GH 13144)Bug in
SparseSeries
withMultiIndex
[]
indexing result may have normalIndex
(GH 13144)Bug in
SparseDataFrame
in whichaxis=None
did not default toaxis=0
(GH 13048)Bug in
SparseSeries
andSparseDataFrame
creation withobject
dtype may raiseTypeError
(GH 11633)Bug in
SparseDataFrame
doesn’t respect passedSparseArray
orSparseSeries
‘s dtype andfill_value
(GH 13866)Bug in
SparseArray
andSparseSeries
don’t apply ufunc tofill_value
(GH 13853)Bug in
SparseSeries.abs
incorrectly keeps negativefill_value
(GH 13853)Bug in single row slicing on multi-type
SparseDataFrame
s, types were previously forced to float (GH 13917)Bug in
SparseSeries
slicing changes integer dtype to float (GH 8292)Bug in
SparseDataFarme
comparison ops may raiseTypeError
(GH 13001)Bug in
SparseDataFarme.isnull
raisesValueError
(GH 8276)Bug in
SparseSeries
representation withbool
dtype may raiseIndexError
(GH 13110)Bug in
SparseSeries
andSparseDataFrame
ofbool
orint64
dtype may display its values likefloat64
dtype (GH 13110)Bug in sparse indexing using
SparseArray
withbool
dtype may return incorrect result (GH 13985)Bug in
SparseArray
created fromSparseSeries
may losedtype
(GH 13999)Bug in
SparseSeries
comparison with dense returns normalSeries
rather thanSparseSeries
(GH 13999)
Indexer dtype changes#
Note
This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations
Methods such as Index.get_indexer
that return an indexer array, coerce that array to a “platform int”, so that it can be
directly used in 3rd party library operations like numpy.take
. Previously, a platform int was defined as np.int_
which corresponds to a C integer, but the correct type, and what is being used now, is np.intp
, which corresponds
to the C integer size that can hold a pointer (GH 3033, GH 13972).
These types are the same on many platform, but for 64 bit python on Windows,
np.int_
is 32 bits, and np.intp
is 64 bits. Changing this behavior improves performance for many
operations on that platform.
Previous behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')
New behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')
Other API changes#
Timestamp.to_pydatetime
will issue aUserWarning
whenwarn=True
, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH 14101).Series.unique()
with datetime and timezone now returns return array ofTimestamp
with timezone (GH 13565).Panel.to_sparse()
will raise aNotImplementedError
exception when called (GH 13778).Index.reshape()
will raise aNotImplementedError
exception when called (GH 12882)..filter()
enforces mutual exclusion of the keyword arguments (GH 12399).eval
’s upcasting rules forfloat32
types have been updated to be more consistent with NumPy’s rules. New behavior will not upcast tofloat64
if you multiply a pandasfloat32
object by a scalar float64 (GH 12388).An
UnsupportedFunctionCall
error is now raised if NumPy ufuncs likenp.mean
are called on groupby or resample objects (GH 12811).__setitem__
will no longer apply a callable rhs as a function instead of storing it. Callwhere
directly to get the previous behavior (GH 13299).Calls to
.sample()
will respect the random seed set vianumpy.random.seed(n)
(GH 13161)Styler.apply
is now more strict about the outputs your function must return. Foraxis=0
oraxis=1
, the output shape must be identical. Foraxis=None
, the output must be a DataFrame with identical columns and index labels (GH 13222).Float64Index.astype(int)
will now raiseValueError
ifFloat64Index
containsNaN
values (GH 13149)TimedeltaIndex.astype(int)
andDatetimeIndex.astype(int)
will now returnInt64Index
instead ofnp.array
(GH 13209)Passing
Period
with multiple frequencies to normalIndex
now returnsIndex
withobject
dtype (GH 13664)PeriodIndex.fillna
withPeriod
has different freq now coerces toobject
dtype (GH 13664)Faceted boxplots from
DataFrame.boxplot(by=col)
now return aSeries
whenreturn_type
is not None. Previously these returned anOrderedDict
. Note that whenreturn_type=None
, the default, these still return a 2-D NumPy array (GH 12216, GH 7096).pd.read_hdf
will now raise aValueError
instead ofKeyError
, if a mode other thanr
,r+
anda
is supplied. (GH 13623)pd.read_csv()
,pd.read_table()
, andpd.read_hdf()
raise the builtinFileNotFoundError
exception for Python 3.x when called on a nonexistent file; this is back-ported asIOError
in Python 2.x (GH 14086)More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of
CParserError
(GH 13652).pd.read_csv()
in the C engine will now issue aParserWarning
or raise aValueError
whensep
encoded is more than one character long (GH 14065)DataFrame.values
will now returnfloat64
with aDataFrame
of mixedint64
anduint64
dtypes, conforming tonp.find_common_type
(GH 10364, GH 13917).groupby.groups
will now return a dictionary ofIndex
objects, rather than a dictionary ofnp.ndarray
orlists
(GH 14293)
Deprecations#
Series.reshape
andCategorical.reshape
have been deprecated and will be removed in a subsequent release (GH 12882, GH 12882)PeriodIndex.to_datetime
has been deprecated in favor ofPeriodIndex.to_timestamp
(GH 8254)Timestamp.to_datetime
has been deprecated in favor ofTimestamp.to_pydatetime
(GH 8254)Index.to_datetime
andDatetimeIndex.to_datetime
have been deprecated in favor ofpd.to_datetime
(GH 8254)pandas.core.datetools
module has been deprecated and will be removed in a subsequent release (GH 14094)SparseList
has been deprecated and will be removed in a future version (GH 13784)DataFrame.to_html()
andDataFrame.to_latex()
have dropped thecolSpace
parameter in favor ofcol_space
(GH 13857)DataFrame.to_sql()
has deprecated theflavor
parameter, as it is superfluous when SQLAlchemy is not installed (GH 13611)Deprecated
read_csv
keywords:compact_ints
anduse_unsigned
have been deprecated and will be removed in a future version (GH 13320)buffer_lines
has been deprecated and will be removed in a future version (GH 13360)as_recarray
has been deprecated and will be removed in a future version (GH 13373)skip_footer
has been deprecated in favor ofskipfooter
and will be removed in a future version (GH 13349)
top-level
pd.ordered_merge()
has been renamed topd.merge_ordered()
and the original name will be removed in a future version (GH 13358)Timestamp.offset
property (and named arg in the constructor), has been deprecated in favor offreq
(GH 12160)pd.tseries.util.pivot_annual
is deprecated. Usepivot_table
as alternative, an example is here (GH 736)pd.tseries.util.isleapyear
has been deprecated and will be removed in a subsequent release. Datetime-likes now have a.is_leap_year
property (GH 13727)Panel4D
andPanelND
constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. pandas provides ato_xarray()
method to automate this conversion (GH 13564).pandas.tseries.frequencies.get_standard_freq
is deprecated. Usepandas.tseries.frequencies.to_offset(freq).rule_code
instead (GH 13874)pandas.tseries.frequencies.to_offset
’sfreqstr
keyword is deprecated in favor offreq
(GH 13874)Categorical.from_array
has been deprecated and will be removed in a future version (GH 13854)
Removal of prior version deprecations/changes#
The
SparsePanel
class has been removed (GH 13778)The
pd.sandbox
module has been removed in favor of the external librarypandas-qt
(GH 13670)The
pandas.io.data
andpandas.io.wb
modules are removed in favor of the pandas-datareader package (GH 13724).The
pandas.tools.rplot
module has been removed in favor of the seaborn package (GH 13855)DataFrame.to_csv()
has dropped theengine
parameter, as was deprecated in 0.17.1 (GH 11274, GH 13419)DataFrame.to_dict()
has dropped theouttype
parameter in favor oforient
(GH 13627, GH 8486)pd.Categorical
has dropped setting of theordered
attribute directly in favor of theset_ordered
method (GH 13671)pd.Categorical
has dropped thelevels
attribute in favor ofcategories
(GH 8376)DataFrame.to_sql()
has dropped themysql
option for theflavor
parameter (GH 13611)Panel.shift()
has dropped thelags
parameter in favor ofperiods
(GH 14041)pd.Index
has dropped thediff
method in favor ofdifference
(GH 13669)pd.DataFrame
has dropped theto_wide
method in favor ofto_panel
(GH 14039)Series.to_csv
has dropped thenanRep
parameter in favor ofna_rep
(GH 13804)Series.xs
,DataFrame.xs
,Panel.xs
,Panel.major_xs
, andPanel.minor_xs
have dropped thecopy
parameter (GH 13781)str.split
has dropped thereturn_type
parameter in favor ofexpand
(GH 13701)Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH 13590, GH 13868). Now legacy time rules raises
ValueError
. For the list of currently supported offsets, see here.The default value for the
return_type
parameter forDataFrame.plot.box
andDataFrame.boxplot
changed fromNone
to"axes"
. These methods will now return a matplotlib axes by default instead of a dictionary of artists. See here (GH 6581).The
tquery
anduquery
functions in thepandas.io.sql
module are removed (GH 5950).
Performance improvements#
Improved performance of sparse
IntIndex.intersect
(GH 13082)Improved performance of sparse arithmetic with
BlockIndex
when the number of blocks are large, though recommended to useIntIndex
in such cases (GH 13082)Improved performance of
DataFrame.quantile()
as it now operates per-block (GH 11623)Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH 13166, GH 13334)
Improved performance of
DataFrameGroupBy.transform
(GH 12737)Improved performance of
Index
andSeries
.duplicated
(GH 10235)Improved performance of
Index.difference
(GH 12044)Improved performance of
RangeIndex.is_monotonic_increasing
andis_monotonic_decreasing
(GH 13749)Improved performance of datetime string parsing in
DatetimeIndex
(GH 13692)Improved performance of hashing
Period
(GH 12817)Improved performance of
factorize
of datetime with timezone (GH 13750)Improved performance of by lazily creating indexing hashtables on larger Indexes (GH 14266)
Improved performance of
groupby.groups
(GH 14293)Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH 14308)
Bug fixes#
Bug in
groupby().shift()
, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH 13813)Bug in
groupby().cumsum()
calculatingcumprod
whenaxis=1
. (GH 13994)Bug in
pd.to_timedelta()
in which theerrors
parameter was not being respected (GH 13613)Bug in
io.json.json_normalize()
, where non-ascii keys raised an exception (GH 13213)Bug when passing a not-default-indexed
Series
asxerr
oryerr
in.plot()
(GH 11858)Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH 9161, GH 13544)
Bug in
DataFrame
assignment with an object-dtypedIndex
where the resultant column is mutable to the original object. (GH 13522)Bug in matplotlib
AutoDataFormatter
; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH 13131)Bug in selection from a
HDFStore
with a fixed format andstart
and/orstop
specified will now return the selected range (GH 8287)Bug in
Categorical.from_codes()
where an unhelpful error was raised when an invalidordered
parameter was passed in (GH 14058)Bug in
Series
construction from a tuple of integers on windows not returning default dtype (int64) (GH 13646)Bug in
TimedeltaIndex
addition with a Datetime-like object where addition overflow was not being caught (GH 14068)Bug in
.groupby(..).resample(..)
when the same object is called multiple times (GH 13174)Bug in
.to_records()
when index name is a unicode string (GH 13172)Bug in calling
.memory_usage()
on object which doesn’t implement (GH 12924)Regression in
Series.quantile
with nans (also shows up in.median()
and.describe()
); furthermore now names theSeries
with the quantile (GH 13098, GH 13146)Bug in
SeriesGroupBy.transform
with datetime values and missing groups (GH 13191)Bug where empty
Series
were incorrectly coerced in datetime-like numeric operations (GH 13844)Bug in
Categorical
constructor when passed aCategorical
containing datetimes with timezones (GH 14190)Bug in
Series.str.extractall()
withstr
index raisesValueError
(GH 13156)Bug in
Series.str.extractall()
with single group and quantifier (GH 13382)Bug in
DatetimeIndex
andPeriod
subtraction raisesValueError
orAttributeError
rather thanTypeError
(GH 13078)Bug in
Index
andSeries
created withNaN
andNaT
mixed data may not havedatetime64
dtype (GH 13324)Bug in
Index
andSeries
may ignorenp.datetime64('nat')
andnp.timdelta64('nat')
to infer dtype (GH 13324)Bug in
PeriodIndex
andPeriod
subtraction raisesAttributeError
(GH 13071)Bug in
PeriodIndex
construction returning afloat64
index in some circumstances (GH 13067)Bug in
.resample(..)
with aPeriodIndex
not changing itsfreq
appropriately when empty (GH 13067)Bug in
.resample(..)
with aPeriodIndex
not retaining its type or name with an emptyDataFrame
appropriately when empty (GH 13212)Bug in
groupby(..).apply(..)
when the passed function returns scalar values per group (GH 13468).Bug in
groupby(..).resample(..)
where passing some keywords would raise an exception (GH 13235)Bug in
.tz_convert
on a tz-awareDateTimeIndex
that relied on index being sorted for correct results (GH 13306)Bug in
.tz_localize
withdateutil.tz.tzlocal
may return incorrect result (GH 13583)Bug in
DatetimeTZDtype
dtype withdateutil.tz.tzlocal
cannot be regarded as valid dtype (GH 13583)Bug in
pd.read_hdf()
where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH 13231)Bug in
.rolling()
that allowed a negative integer window in construction of theRolling()
object, but would later fail on aggregation (GH 13383)Bug in
Series
indexing with tuple-valued data and a numeric index (GH 13509)Bug in printing
pd.DataFrame
where unusual elements with theobject
dtype were causing segfaults (GH 13717)Bug in ranking
Series
which could result in segfaults (GH 13445)Bug in various index types, which did not propagate the name of passed index (GH 12309)
Bug in
DatetimeIndex
, which did not honour thecopy=True
(GH 13205)Bug in
DatetimeIndex.is_normalized
returns incorrectly for normalized date_range in case of local timezones (GH 13459)Bug in
pd.concat
and.append
may coercesdatetime64
andtimedelta
toobject
dtype containing python built-indatetime
ortimedelta
rather thanTimestamp
orTimedelta
(GH 13626)Bug in
PeriodIndex.append
may raisesAttributeError
when the result isobject
dtype (GH 13221)Bug in
CategoricalIndex.append
may accept normallist
(GH 13626)Bug in
pd.concat
and.append
with the same timezone get reset to UTC (GH 7795)Bug in
Series
andDataFrame
.append
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH 13626)Bug in
DataFrame.to_csv()
in which float values were being quoted even though quotations were specified for non-numeric values only (GH 12922, GH 13259)Bug in
DataFrame.describe()
raisingValueError
with only boolean columns (GH 13898)Bug in
MultiIndex
slicing where extra elements were returned when level is non-unique (GH 12896)Bug in
.str.replace
does not raiseTypeError
for invalid replacement (GH 13438)Bug in
MultiIndex.from_arrays
which didn’t check for input array lengths matching (GH 13599)Bug in
cartesian_product
andMultiIndex.from_product
which may raise with empty input arrays (GH 12258)Bug in
pd.read_csv()
which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH 13703)Bug in
pd.read_csv()
which caused errors to be raised when a dictionary containing scalars is passed in forna_values
(GH 12224)Bug in
pd.read_csv()
which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH 4793)Bug in
pd.read_csv()
withengine='python'
which raised errors when a numpy array was passed in forusecols
(GH 12546)Bug in
pd.read_csv()
where the index columns were being incorrectly parsed when parsed as dates with athousands
parameter (GH 14066)Bug in
pd.read_csv()
withengine='python'
in whichNaN
values weren’t being detected after data was converted to numeric values (GH 13314)Bug in
pd.read_csv()
in which thenrows
argument was not properly validated for both engines (GH 10476)Bug in
pd.read_csv()
withengine='python'
in which infinities of mixed-case forms were not being interpreted properly (GH 13274)Bug in
pd.read_csv()
withengine='python'
in which trailingNaN
values were not being parsed (GH 13320)Bug in
pd.read_csv()
withengine='python'
when reading from atempfile.TemporaryFile
on Windows with Python 3 (GH 13398)Bug in
pd.read_csv()
that preventsusecols
kwarg from accepting single-byte unicode strings (GH 13219)Bug in
pd.read_csv()
that preventsusecols
from being an empty set (GH 13402)Bug in
pd.read_csv()
in the C engine where the NULL character was not being parsed as NULL (GH 14012)Bug in
pd.read_csv()
withengine='c'
in which NULLquotechar
was not accepted even thoughquoting
was specified asNone
(GH 13411)Bug in
pd.read_csv()
withengine='c'
in which fields were not properly cast to float when quoting was specified as non-numeric (GH 13411)Bug in
pd.read_csv()
in Python 2.x with non-UTF8 encoded, multi-character separated data (GH 3404)Bug in
pd.read_csv()
, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH 13549)Bug in
pd.read_csv
,pd.read_table
,pd.read_fwf
,pd.read_stata
andpd.read_sas
where files were opened by parsers but not closed if bothchunksize
anditerator
wereNone
. (GH 13940)Bug in
StataReader
,StataWriter
,XportReader
andSAS7BDATReader
where a file was not properly closed when an error was raised. (GH 13940)Bug in
pd.pivot_table()
wheremargins_name
is ignored whenaggfunc
is a list (GH 13354)Bug in
pd.Series.str.zfill
,center
,ljust
,rjust
, andpad
when passing non-integers, did not raiseTypeError
(GH 13598)Bug in checking for any null objects in a
TimedeltaIndex
, which always returnedTrue
(GH 13603)Bug in
Series
arithmetic raisesTypeError
if it contains datetime-like asobject
dtype (GH 13043)Bug
Series.isnull()
andSeries.notnull()
ignorePeriod('NaT')
(GH 13737)Bug
Series.fillna()
andSeries.dropna()
don’t affect toPeriod('NaT')
(GH 13737Bug in
.fillna(value=np.nan)
incorrectly raisesKeyError
on acategory
dtypedSeries
(GH 14021)Bug in extension dtype creation where the created types were not is/identical (GH 13285)
Bug in
.resample(..)
where incorrect warnings were triggered by IPython introspection (GH 13618)Bug in
NaT
-Period
raisesAttributeError
(GH 13071)Bug in
Series
comparison may output incorrect result if rhs containsNaT
(GH 9005)Bug in
Series
andIndex
comparison may output incorrect result if it containsNaT
withobject
dtype (GH 13592)Bug in
Period
addition raisesTypeError
ifPeriod
is on right hand side (GH 13069)Bug in
Period
andSeries
orIndex
comparison raisesTypeError
(GH 13200)Bug in
pd.set_eng_float_format()
that would prevent NaN and Inf from formatting (GH 11981)Bug in
.unstack
withCategorical
dtype resets.ordered
toTrue
(GH 13249)Clean some compile time warnings in datetime parsing (GH 13607)
Bug in
factorize
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH 13750)Bug in
.set_index
raisesAmbiguousTimeError
if new index contains DST boundary and multi levels (GH 12920)Bug in
.shift
raisesAmbiguousTimeError
if data contains datetime near DST boundary (GH 13926)Bug in
pd.read_hdf()
returns incorrect result when aDataFrame
with acategorical
column and a query which doesn’t match any values (GH 13792)Bug in
.iloc
when indexing with a non lexsorted MultiIndex (GH 13797)Bug in
.loc
when indexing with date strings in a reverse sortedDatetimeIndex
(GH 14316)Bug in
Series
comparison operators when dealing with zero dim NumPy arrays (GH 13006)Bug in
.combine_first
may return incorrectdtype
(GH 7630, GH 10567)Bug in
groupby
whereapply
returns different result depending on whether first result isNone
or not (GH 12824)Bug in
groupby(..).nth()
where the group key is included inconsistently if called after.head()/.tail()
(GH 12839)Bug in
.to_html
,.to_latex
and.to_string
silently ignore custom datetime formatter passed through theformatters
key word (GH 10690)Bug in
DataFrame.iterrows()
, not yielding aSeries
subclasse if defined (GH 13977)Bug in
pd.to_numeric
whenerrors='coerce'
and input contains non-hashable objects (GH 13324)Bug in invalid
Timedelta
arithmetic and comparison may raiseValueError
rather thanTypeError
(GH 13624)Bug in invalid datetime parsing in
to_datetime
andDatetimeIndex
may raiseTypeError
rather thanValueError
(GH 11169, GH 11287)Bug in
Index
created with tz-awareTimestamp
and mismatchedtz
option incorrectly coerces timezone (GH 13692)Bug in
DatetimeIndex
with nanosecond frequency does not include timestamp specified withend
(GH 13672)Bug in
Series
when setting a slice with anp.timedelta64
(GH 14155)Bug in
Index
raisesOutOfBoundsDatetime
ifdatetime
exceedsdatetime64[ns]
bounds, rather than coercing toobject
dtype (GH 13663)Bug in
Index
may ignore specifieddatetime64
ortimedelta64
passed asdtype
(GH 13981)Bug in
RangeIndex
can be created without no arguments rather than raisesTypeError
(GH 13793)Bug in
.value_counts()
raisesOutOfBoundsDatetime
if data exceedsdatetime64[ns]
bounds (GH 13663)Bug in
DatetimeIndex
may raiseOutOfBoundsDatetime
if inputnp.datetime64
has other unit thanns
(GH 9114)Bug in
Series
creation withnp.datetime64
which has other unit thanns
asobject
dtype results in incorrect values (GH 13876)Bug in
resample
with timedelta data where data was casted to float (GH 13119).Bug in
pd.isnull()
pd.notnull()
raiseTypeError
if input datetime-like has other unit thanns
(GH 13389)Bug in
pd.merge()
may raiseTypeError
if input datetime-like has other unit thanns
(GH 13389)Bug in
HDFStore
/read_hdf()
discardedDatetimeIndex.name
iftz
was set (GH 13884)Bug in
Categorical.remove_unused_categories()
changes.codes
dtype to platform int (GH 13261)Bug in
groupby
withas_index=False
returns all NaN’s when grouping on multiple columns including a categorical one (GH 13204)Bug in
df.groupby(...)[...]
where getitem withInt64Index
raised an error (GH 13731)Bug in the CSS classes assigned to
DataFrame.style
for index names. Previously they were assigned"col_heading level<n> col<c>"
wheren
was the number of levels + 1. Now they are assigned"index_name level<n>"
, wheren
is the correct level for that MultiIndex.Bug where
pd.read_gbq()
could throwImportError: No module named discovery
as a result of a naming conflict with another python package called apiclient (GH 13454)Bug in
Index.union
returns an incorrect result with a named empty index (GH 13432)Bugs in
Index.difference
andDataFrame.join
raise in Python3 when using mixed-integer indexes (GH 13432, GH 12814)Bug in subtract tz-aware
datetime.datetime
from tz-awaredatetime64
series (GH 14088)Bug in
.to_excel()
when DataFrame contains a MultiIndex which contains a label with a NaN value (GH 13511)Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise
ValueError
(GH 13930)Bug in
concat
andgroupby
for hierarchical frames withRangeIndex
levels (GH 13542).Bug in
Series.str.contains()
for Series containing onlyNaN
values ofobject
dtype (GH 14171)Bug in
agg()
function on groupby dataframe changes dtype ofdatetime64[ns]
column tofloat64
(GH 12821)Bug in using NumPy ufunc with
PeriodIndex
to add or subtract integer raiseIncompatibleFrequency
. Note that using standard operator like+
or-
is recommended, because standard operators use more efficient path (GH 13980)Bug in operations on
NaT
returningfloat
instead ofdatetime64[ns]
(GH 12941)Bug in
Series
flexible arithmetic methods (like.add()
) raisesValueError
whenaxis=None
(GH 13894)Bug in
DataFrame.to_csv()
withMultiIndex
columns in which a stray empty line was added (GH 6618)Bug in
DatetimeIndex
,TimedeltaIndex
andPeriodIndex.equals()
may returnTrue
when input isn’tIndex
but contains the same values (GH 13107)Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH 14146)
Bug in
pd.eval()
andHDFStore
query truncating long float literals with python 2 (GH 14241)Bug in
Index
raisesKeyError
displaying incorrect column when column is not in the df and columns contains duplicate values (GH 13822)Bug in
Period
andPeriodIndex
creating wrong dates when frequency has combined offset aliases (GH 13874)Bug in
.to_string()
when called with an integerline_width
andindex=False
raises an UnboundLocalError exception becauseidx
referenced before assignment.Bug in
eval()
where theresolvers
argument would not accept a list (GH 14095)Bugs in
stack
,get_dummies
,make_axis_dummies
which don’t preserve categorical dtypes in (multi)indexes (GH 13854)PeriodIndex
can now acceptlist
andarray
which containspd.NaT
(GH 13430)Bug in
df.groupby
where.median()
returns arbitrary values if grouped dataframe contains empty bins (GH 13629)Bug in
Index.copy()
wherename
parameter was ignored (GH 14302)
Contributors#
A total of 117 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Adrien Emery +
Alex Alekseyev
Alex Vig +
Allen Riddell +
Amol +
Amol Agrawal +
Andy R. Terrel +
Anthonios Partheniou
Ben Kandel +
Bob Baxley +
Brett Rosen +
Camilo Cota +
Chris
Chris Grinolds
Chris Warth
Christian Hudon
Christopher C. Aycock
Daniel Siladji +
Douglas McNeil
Drewrey Lupton +
Eduardo Blancas Reyes +
Elliot Marsden +
Evan Wright
Felix Marczinowski +
Francis T. O’Donovan
Geraint Duck +
Giacomo Ferroni +
Grant Roch +
Gábor Lipták
Haleemur Ali +
Hassan Shamim +
Iulius Curt +
Ivan Nazarov +
Jeff Reback
Jeffrey Gerard +
Jenn Olsen +
Jim Crist
Joe Jevnik
John Evans +
John Freeman
John Liekezer +
John W. O’Brien
John Zwinck +
Johnny Gill +
Jordan Erenrich +
Joris Van den Bossche
Josh Howes +
Jozef Brandys +
Ka Wo Chen
Kamil Sindi +
Kerby Shedden
Kernc +
Kevin Sheppard
Matthieu Brucher +
Maximilian Roos
Michael Scherer +
Mike Graham +
Mortada Mehyar
Muhammad Haseeb Tariq +
Nate George +
Neil Parley +
Nicolas Bonnotte
OXPHOS
Pan Deng / Zora +
Paul +
Paul Mestemaker +
Pauli Virtanen
Pawel Kordek +
Pietro Battiston
Piotr Jucha +
Ravi Kumar Nimmi +
Robert Gieseke
Robert Kern +
Roger Thomas
Roy Keyes +
Russell Smith +
Sahil Dua +
Sanjiv Lobo +
Sašo Stanovnik +
Shawn Heide +
Sinhrks
Stephen Kappel +
Steve Choi +
Stewart Henderson +
Sudarshan Konge +
Thomas A Caswell
Tom Augspurger
Tom Bird +
Uwe Hoffmann +
WillAyd +
Xiang Zhang +
YG-Riku +
Yadunandan +
Yaroslav Halchenko
Yuichiro Kaneko +
adneu
agraboso +
babakkeyvani +
c123w +
chris-b1
cmazzullo +
conquistador1492 +
cr3 +
dsm054
gfyoung
harshul1610 +
iamsimha +
jackieleng +
mpuels +
pijucha +
priyankjain +
sinhrks
wcwagner +
yui-knk +
zhangjinjie +
znmean +
颜发才(Yan Facai) +