pandas.io.formats.style.Styler.highlight_quantile#

Styler.highlight_quantile(subset=None, color='yellow', axis=0, q_left=0.0, q_right=1.0, interpolation='linear', inclusive='both', props=None)[source]#

Highlight values defined by a quantile with a style.

Added in version 1.3.0.

Parameters:
subsetlabel, array-like, IndexSlice, optional

A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit data to before applying the function.

colorstr, default ‘yellow’

Background color to use for highlighting.

axis{0 or ‘index’, 1 or ‘columns’, None}, default 0

Axis along which to determine and highlight quantiles. If None quantiles are measured over the entire DataFrame. See examples.

q_leftfloat, default 0

Left bound, in [0, q_right), for the target quantile range.

q_rightfloat, default 1

Right bound, in (q_left, 1], for the target quantile range.

interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

Argument passed to Series.quantile or DataFrame.quantile for quantile estimation.

inclusive{‘both’, ‘neither’, ‘left’, ‘right’}

Identify whether quantile bounds are closed or open.

propsstr, default None

CSS properties to use for highlighting. If props is given, color is not used.

Returns:
Styler

See also

Styler.highlight_null

Highlight missing values with a style.

Styler.highlight_max

Highlight the maximum with a style.

Styler.highlight_min

Highlight the minimum with a style.

Styler.highlight_between

Highlight a defined range with a style.

Notes

This function does not work with str dtypes.

Examples

Using axis=None and apply a quantile to all collective data

>>> df = pd.DataFrame(np.arange(10).reshape(2, 5) + 1)
>>> df.style.highlight_quantile(axis=None, q_left=0.8, color="#fffd75")
... 
../../_images/hq_axNone.png

Or highlight quantiles row-wise or column-wise, in this case by row-wise

>>> df.style.highlight_quantile(axis=1, q_left=0.8, color="#fffd75")
... 
../../_images/hq_ax1.png

Use props instead of default background coloring

>>> df.style.highlight_quantile(
...     axis=None,
...     q_left=0.2,
...     q_right=0.8,
...     props="font-weight:bold;color:#e83e8c",
... )  
../../_images/hq_props.png