pandas.core.groupby.DataFrameGroupBy.skew#
- DataFrameGroupBy.skew(skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased skew within groups.
Normalized by N-1.
- Parameters:
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- DataFrame
Unbiased skew within groups.
See also
DataFrame.skew
Return unbiased skew over requested axis.
Examples
>>> arrays = [ ... ["falcon", "parrot", "cockatoo", "kiwi", "lion", "monkey", "rabbit"], ... ["bird", "bird", "bird", "bird", "mammal", "mammal", "mammal"], ... ] >>> index = pd.MultiIndex.from_arrays(arrays, names=("name", "class")) >>> df = pd.DataFrame( ... {"max_speed": [389.0, 24.0, 70.0, np.nan, 80.5, 21.5, 15.0]}, ... index=index, ... ) >>> df max_speed name class falcon bird 389.0 parrot bird 24.0 cockatoo bird 70.0 kiwi bird NaN lion mammal 80.5 monkey mammal 21.5 rabbit mammal 15.0 >>> gb = df.groupby(["class"]) >>> gb.skew() max_speed class bird 1.628296 mammal 1.669046 >>> gb.skew(skipna=False) max_speed class bird NaN mammal 1.669046