pandas.HDFStore.select#
- HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False)[source]#
Retrieve pandas object stored in file, optionally based on where criteria.
Warning
Pandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle when using the “fixed” format. Loading pickled data received from untrusted sources can be unsafe.
See: https://docs.python.org/3/library/pickle.html for more.
- Parameters:
- keystr
Object being retrieved from file.
- wherelist or None
List of Term (or convertible) objects, optional.
- startint or None
Row number to start selection.
- stopint, default None
Row number to stop selection.
- columnslist or None
A list of columns that if not None, will limit the return columns.
- iteratorbool or False
Returns an iterator.
- chunksizeint or None
Number or rows to include in iteration, return an iterator.
- auto_closebool or False
Should automatically close the store when finished.
- Returns:
- object
Retrieved object from file.
See also
HDFStore.select_as_coordinates
Returns the selection as an index.
HDFStore.select_column
Returns a single column from the table.
HDFStore.select_as_multiple
Retrieves pandas objects from multiple tables.
Examples
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) >>> store = pd.HDFStore("store.h5", "w") >>> store.put("data", df) >>> store.get("data") >>> print(store.keys()) ['/data1', '/data2'] >>> store.select("/data1") A B 0 1 2 1 3 4 >>> store.select("/data1", where="columns == A") A 0 1 1 3 >>> store.close()