.. currentmodule:: pandas {{ header }} .. _integer_na: ************************** Nullable integer data type ************************** .. note:: IntegerArray is currently experimental. Its API or implementation may change without warning. Uses :attr:`pandas.NA` as the missing value. In :ref:`missing_data`, we saw that pandas primarily uses ``NaN`` to represent missing data. Because ``NaN`` is a float, this forces an array of integers with any missing values to become floating point. In some cases, this may not matter much. But if your integer column is, say, an identifier, casting to float can be problematic. Some integers cannot even be represented as floating point numbers. Construction ------------ pandas can represent integer data with possibly missing values using :class:`arrays.IntegerArray`. This is an :ref:`extension type ` implemented within pandas. .. ipython:: python arr = pd.array([1, 2, None], dtype=pd.Int64Dtype()) arr Or the string alias ``"Int64"`` (note the capital ``"I"``) to differentiate from NumPy's ``'int64'`` dtype: .. ipython:: python pd.array([1, 2, np.nan], dtype="Int64") All NA-like values are replaced with :attr:`pandas.NA`. .. ipython:: python pd.array([1, 2, np.nan, None, pd.NA], dtype="Int64") This array can be stored in a :class:`DataFrame` or :class:`Series` like any NumPy array. .. ipython:: python pd.Series(arr) You can also pass the list-like object to the :class:`Series` constructor with the dtype. .. warning:: Currently :meth:`pandas.array` and :meth:`pandas.Series` use different rules for dtype inference. :meth:`pandas.array` will infer a nullable-integer dtype .. ipython:: python pd.array([1, None]) pd.array([1, 2]) For backwards-compatibility, :class:`Series` infers these as either integer or float dtype. .. ipython:: python pd.Series([1, None]) pd.Series([1, 2]) We recommend explicitly providing the dtype to avoid confusion. .. ipython:: python pd.array([1, None], dtype="Int64") pd.Series([1, None], dtype="Int64") In the future, we may provide an option for :class:`Series` to infer a nullable-integer dtype. If you create a column of ``NA`` values (for example to fill them later) with ``df['new_col'] = pd.NA``, the ``dtype`` would be set to ``object`` in the new column. The performance on this column will be worse than with the appropriate type. It's better to use ``df['new_col'] = pd.Series(pd.NA, dtype="Int64")`` (or another ``dtype`` that supports ``NA``). .. ipython:: python df = pd.DataFrame() df['objects'] = pd.NA df.dtypes Operations ---------- Operations involving an integer array will behave similar to NumPy arrays. Missing values will be propagated, and the data will be coerced to another dtype if needed. .. ipython:: python s = pd.Series([1, 2, None], dtype="Int64") # arithmetic s + 1 # comparison s == 1 # slicing operation s.iloc[1:3] # operate with other dtypes s + s.iloc[1:3].astype("Int8") # coerce when needed s + 0.01 These dtypes can operate as part of a ``DataFrame``. .. ipython:: python df = pd.DataFrame({"A": s, "B": [1, 1, 3], "C": list("aab")}) df df.dtypes These dtypes can be merged, reshaped & casted. .. ipython:: python pd.concat([df[["A"]], df[["B", "C"]]], axis=1).dtypes df["A"].astype(float) Reduction and groupby operations such as :meth:`~DataFrame.sum` work as well. .. ipython:: python df.sum(numeric_only=True) df.sum() df.groupby("B").A.sum() Scalar NA Value --------------- :class:`arrays.IntegerArray` uses :attr:`pandas.NA` as its scalar missing value. Slicing a single element that's missing will return :attr:`pandas.NA` .. ipython:: python a = pd.array([1, None], dtype="Int64") a[1]