.. _compare_with_sql: {{ header }} Comparison with SQL ******************** Since many potential pandas users have some familiarity with `SQL `_, this page is meant to provide some examples of how various SQL operations would be performed using pandas. .. include:: includes/introduction.rst Most of the examples will utilize the ``tips`` dataset found within pandas tests. We'll read the data into a DataFrame called ``tips`` and assume we have a database table of the same name and structure. .. ipython:: python url = ( "https://raw.githubusercontent.com/pandas-dev" "/pandas/main/pandas/tests/io/data/csv/tips.csv" ) tips = pd.read_csv(url) tips Copies vs. in place operations ------------------------------ .. include:: includes/copies.rst SELECT ------ In SQL, selection is done using a comma-separated list of columns you'd like to select (or a ``*`` to select all columns): .. code-block:: sql SELECT total_bill, tip, smoker, time FROM tips; With pandas, column selection is done by passing a list of column names to your DataFrame: .. ipython:: python tips[["total_bill", "tip", "smoker", "time"]] Calling the DataFrame without the list of column names would display all columns (akin to SQL's ``*``). In SQL, you can add a calculated column: .. code-block:: sql SELECT *, tip/total_bill as tip_rate FROM tips; With pandas, you can use the :meth:`DataFrame.assign` method of a DataFrame to append a new column: .. ipython:: python tips.assign(tip_rate=tips["tip"] / tips["total_bill"]) WHERE ----- Filtering in SQL is done via a WHERE clause. .. code-block:: sql SELECT * FROM tips WHERE time = 'Dinner'; .. include:: includes/filtering.rst Just like SQL's ``OR`` and ``AND``, multiple conditions can be passed to a DataFrame using ``|`` (``OR``) and ``&`` (``AND``). Tips of more than $5 at Dinner meals: .. code-block:: sql SELECT * FROM tips WHERE time = 'Dinner' AND tip > 5.00; .. ipython:: python tips[(tips["time"] == "Dinner") & (tips["tip"] > 5.00)] Tips by parties of at least 5 diners OR bill total was more than $45: .. code-block:: sql SELECT * FROM tips WHERE size >= 5 OR total_bill > 45; .. ipython:: python tips[(tips["size"] >= 5) | (tips["total_bill"] > 45)] NULL checking is done using the :meth:`~pandas.Series.notna` and :meth:`~pandas.Series.isna` methods. .. ipython:: python frame = pd.DataFrame( {"col1": ["A", "B", np.nan, "C", "D"], "col2": ["F", np.nan, "G", "H", "I"]} ) frame Assume we have a table of the same structure as our DataFrame above. We can see only the records where ``col2`` IS NULL with the following query: .. code-block:: sql SELECT * FROM frame WHERE col2 IS NULL; .. ipython:: python frame[frame["col2"].isna()] Getting items where ``col1`` IS NOT NULL can be done with :meth:`~pandas.Series.notna`. .. code-block:: sql SELECT * FROM frame WHERE col1 IS NOT NULL; .. ipython:: python frame[frame["col1"].notna()] GROUP BY -------- In pandas, SQL's ``GROUP BY`` operations are performed using the similarly named :meth:`~pandas.DataFrame.groupby` method. :meth:`~pandas.DataFrame.groupby` typically refers to a process where we'd like to split a dataset into groups, apply some function (typically aggregation) , and then combine the groups together. A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex: .. code-block:: sql SELECT sex, count(*) FROM tips GROUP BY sex; /* Female 87 Male 157 */ The pandas equivalent would be: .. ipython:: python tips.groupby("sex").size() Notice that in the pandas code we used :meth:`.DataFrameGroupBy.size` and not :meth:`.DataFrameGroupBy.count`. This is because :meth:`.DataFrameGroupBy.count` applies the function to each column, returning the number of ``NOT NULL`` records within each. .. ipython:: python tips.groupby("sex").count() Alternatively, we could have applied the :meth:`.DataFrameGroupBy.count` method to an individual column: .. ipython:: python tips.groupby("sex")["total_bill"].count() Multiple functions can also be applied at once. For instance, say we'd like to see how tip amount differs by day of the week - :meth:`.DataFrameGroupBy.agg` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns. .. code-block:: sql SELECT day, AVG(tip), COUNT(*) FROM tips GROUP BY day; /* Fri 2.734737 19 Sat 2.993103 87 Sun 3.255132 76 Thu 2.771452 62 */ .. ipython:: python tips.groupby("day").agg({"tip": "mean", "day": "size"}) Grouping by more than one column is done by passing a list of columns to the :meth:`~pandas.DataFrame.groupby` method. .. code-block:: sql SELECT smoker, day, COUNT(*), AVG(tip) FROM tips GROUP BY smoker, day; /* smoker day No Fri 4 2.812500 Sat 45 3.102889 Sun 57 3.167895 Thu 45 2.673778 Yes Fri 15 2.714000 Sat 42 2.875476 Sun 19 3.516842 Thu 17 3.030000 */ .. ipython:: python tips.groupby(["smoker", "day"]).agg({"tip": ["size", "mean"]}) .. _compare_with_sql.join: JOIN ---- ``JOIN``\s can be performed with :meth:`~pandas.DataFrame.join` or :meth:`~pandas.merge`. By default, :meth:`~pandas.DataFrame.join` will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (``LEFT``, ``RIGHT``, ``INNER``, ``FULL``) or the columns to join on (column names or indices). .. warning:: If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results. .. ipython:: python df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)}) df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)}) Assume we have two database tables of the same name and structure as our DataFrames. Now let's go over the various types of ``JOIN``\s. INNER JOIN ~~~~~~~~~~ .. code-block:: sql SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key; .. ipython:: python # merge performs an INNER JOIN by default pd.merge(df1, df2, on="key") :meth:`~pandas.merge` also offers parameters for cases when you'd like to join one DataFrame's column with another DataFrame's index. .. ipython:: python indexed_df2 = df2.set_index("key") pd.merge(df1, indexed_df2, left_on="key", right_index=True) LEFT OUTER JOIN ~~~~~~~~~~~~~~~ Show all records from ``df1``. .. code-block:: sql SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key; .. ipython:: python pd.merge(df1, df2, on="key", how="left") RIGHT JOIN ~~~~~~~~~~ Show all records from ``df2``. .. code-block:: sql SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key; .. ipython:: python pd.merge(df1, df2, on="key", how="right") FULL JOIN ~~~~~~~~~ pandas also allows for ``FULL JOIN``\s, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, ``FULL JOIN``\s are not supported in all RDBMS (MySQL). Show all records from both tables. .. code-block:: sql SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key; .. ipython:: python pd.merge(df1, df2, on="key", how="outer") UNION ----- ``UNION ALL`` can be performed using :meth:`~pandas.concat`. .. ipython:: python df1 = pd.DataFrame( {"city": ["Chicago", "San Francisco", "New York City"], "rank": range(1, 4)} ) df2 = pd.DataFrame( {"city": ["Chicago", "Boston", "Los Angeles"], "rank": [1, 4, 5]} ) .. code-block:: sql SELECT city, rank FROM df1 UNION ALL SELECT city, rank FROM df2; /* city rank Chicago 1 San Francisco 2 New York City 3 Chicago 1 Boston 4 Los Angeles 5 */ .. ipython:: python pd.concat([df1, df2]) SQL's ``UNION`` is similar to ``UNION ALL``, however ``UNION`` will remove duplicate rows. .. code-block:: sql SELECT city, rank FROM df1 UNION SELECT city, rank FROM df2; -- notice that there is only one Chicago record this time /* city rank Chicago 1 San Francisco 2 New York City 3 Boston 4 Los Angeles 5 */ In pandas, you can use :meth:`~pandas.concat` in conjunction with :meth:`~pandas.DataFrame.drop_duplicates`. .. ipython:: python pd.concat([df1, df2]).drop_duplicates() LIMIT ----- .. code-block:: sql SELECT * FROM tips LIMIT 10; .. ipython:: python tips.head(10) pandas equivalents for some SQL analytic and aggregate functions ---------------------------------------------------------------- Top n rows with offset ~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: sql -- MySQL SELECT * FROM tips ORDER BY tip DESC LIMIT 10 OFFSET 5; .. ipython:: python tips.nlargest(10 + 5, columns="tip").tail(10) Top n rows per group ~~~~~~~~~~~~~~~~~~~~ .. code-block:: sql -- Oracle's ROW_NUMBER() analytic function SELECT * FROM ( SELECT t.*, ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn FROM tips t ) WHERE rn < 3 ORDER BY day, rn; .. ipython:: python ( tips.assign( rn=tips.sort_values(["total_bill"], ascending=False) .groupby(["day"]) .cumcount() + 1 ) .query("rn < 3") .sort_values(["day", "rn"]) ) the same using ``rank(method='first')`` function .. ipython:: python ( tips.assign( rnk=tips.groupby(["day"])["total_bill"].rank( method="first", ascending=False ) ) .query("rnk < 3") .sort_values(["day", "rnk"]) ) .. code-block:: sql -- Oracle's RANK() analytic function SELECT * FROM ( SELECT t.*, RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk FROM tips t WHERE tip < 2 ) WHERE rnk < 3 ORDER BY sex, rnk; Let's find tips with (rank < 3) per gender group for (tips < 2). Notice that when using ``rank(method='min')`` function ``rnk_min`` remains the same for the same ``tip`` (as Oracle's ``RANK()`` function) .. ipython:: python ( tips[tips["tip"] < 2] .assign(rnk_min=tips.groupby(["sex"])["tip"].rank(method="min")) .query("rnk_min < 3") .sort_values(["sex", "rnk_min"]) ) UPDATE ------ .. code-block:: sql UPDATE tips SET tip = tip*2 WHERE tip < 2; .. ipython:: python tips.loc[tips["tip"] < 2, "tip"] *= 2 DELETE ------ .. code-block:: sql DELETE FROM tips WHERE tip > 9; In pandas we select the rows that should remain instead of deleting the rows that should be removed: .. ipython:: python tips = tips.loc[tips["tip"] <= 9]